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Overview
 Introduction: Topological quantum computation and non-

Abelian statistics
 Chiral Majorana fermions
 Edge vortices = Ising anyons = flying Majorana zero

modes (MZMs)
 AC Conductance of Majorana interferometer can reveal

the topological spin of edge vortices → evidence for non-
Abelian braiding of Ising anyons from conductance
measurements

 Conclusions
A. Nava, R. Egger, F. Hassler, and D. Giuliano, arXiv:2403.03757



Anyon braiding
 Exchange of anyons ↔
Adiabatic interlacing of world lines in
space-time („braiding“)
 Braiding Abelian anyons: only scalar phase factor in final 

state
 Braiding of non-Abelian anyons: final state related by

unitary matrix to initial state
 Topologically distinct braids (no continuous deformation

without cutting world lines)  ↔ different unitaries
→  building blocks for topological quantum computation

 Braiding operations connect locally indistinguishable ground
states → fault tolerance



Majorana fermion primer
Consider set of Majorana fermions
 Self-adjoint operators with Clifford algebra

different Majoranas anticommute like fermions 
 But:
 annihilation of particle & antiparticle recovers previous state
 Occupation number of single Majorana fermion ill-defined!

 We can count Majorana pairs: equivalent to conventional
complex fermion

→  single qubit 𝑛𝑛 = 𝑐𝑐+𝑐𝑐 = ⁄𝑖𝑖𝛾𝛾1𝛾𝛾2 + 1 2 = 0,1
𝛾𝛾1 = 𝑐𝑐 + 𝑐𝑐+, 𝛾𝛾2 = −𝑖𝑖 𝑐𝑐 − 𝑐𝑐+

equal-weight electron-hole superpositions

𝛾𝛾𝑖𝑖𝛾𝛾𝑗𝑗 + 𝛾𝛾𝑗𝑗𝛾𝛾𝑖𝑖 = 2𝛿𝛿𝑖𝑖𝑗𝑗

𝛾𝛾𝑗𝑗+𝛾𝛾𝑗𝑗 = 𝛾𝛾𝑗𝑗2 = 1

𝑐𝑐 = ⁄𝛾𝛾1 + 𝑖𝑖𝛾𝛾2 2



Nonlocality and degeneracy

Spatially separate Majorana
pair yields zero-energy
fermion mode ↔ qubit

 Information stored non-
locally & topologically
protected

E-µ

0



Braiding Ising anyons

 Ising anyon = simplest type of non-Abelian particle =  
MZM locked to, e.g. vortex core in topological superconductor

 Mathematically, MZMs cause branch cuts → sign changes
when cut is crossed during braiding operation

 For useful implementations, we need robust and reproducible
hardware platform!  



Abelian fractional statistics

 Tremendous progress in fractional
quantum Hall samples (Abelian
cases): Shot noise & anyon
collision experiments have
measured fractional statistical
exchange angles

 Difficult experiments, took >20 years
of development

 Abelian fractional exchange phases
may be simpler to measure through
conductance

Bartolomei, ... , Fève, Science 2020
Nakamura, ... , Manfra, Nature Phys. 2020

Schiller, Shapira, Stern, Oreg, PRL 2023



Non-Abelian braiding: How to observe it?
 So far only evidence for Majorana braiding from quantum

simulations on transmon circuits Stenger et al., Phys. Rev. Res. 2021, 

Harle et al., Nature Comm. 2023

→ but not useful for practical topological quantum computation
 Problem with existing MZM platforms: disorder causes

conventional subgap Andreev states → compete with MZM, 
hard to distinguish Aghaee et al. (Microsoft Q), PRB 2023

 Here: use analogy to (fractional) quantum Hall case → employ
edge vortex excitations of chiral Majorana fermion modes
as flying Ising anyons

 Chirality protects intrinsically against disorder!
 Which quantity to probe?  Proposals: Shot noise in 𝜈𝜈 = 5

2
FQH 

interferometer Bonderson et al., PRL 2006, Lee & Sim, Nat. Comm. 2022                   



Chiral Majorana interferometer
 Surface of 3D topological insulator = 

2D gapless Dirac fermions (1 cone)
 Create gap by deposition of either

superconductor (S) or magnet (M) 
→ at interface: gapless 1D chiral 
Majorana mode (charge neutral)

 Interferometer: use unit-efficiency 
conversion of chiral Dirac fermions
into pair of chiral Majorana fermions

 Copropagating Majorana modes!
 Electrical DC conductance:   

𝐺𝐺 = −1 𝑛𝑛𝑣𝑣 𝑒𝑒2/ℎ
probes number of bulk vortices Fu & Kane, PRL 2009

Akhmerov, Nilsson & Beenakker, PRL 2009



Chiral Majorana edge modes

Edge Hamiltonian∶
𝐻𝐻0 = −𝑣𝑣∫ 𝑑𝑑𝑑𝑑 𝛾𝛾 𝑑𝑑 𝜕𝜕𝑥𝑥𝛾𝛾(𝑑𝑑)

Chiral Majorana fermions are
Abelian (fermionic) particles with
𝛾𝛾 𝑑𝑑 = 𝛾𝛾+ 𝑑𝑑

𝛾𝛾 𝑑𝑑 , 𝛾𝛾 𝑑𝑑′ = 𝛿𝛿(𝑑𝑑 − 𝑑𝑑′)
Non-Abelian Ising anyons: 
Chiral edge vortex 𝝈𝝈 at 𝑑𝑑 = 𝑑𝑑𝑣𝑣:

𝜎𝜎 𝑑𝑑𝑣𝑣 𝛾𝛾 𝑑𝑑 𝜎𝜎 𝑑𝑑𝑣𝑣 + = �−𝛾𝛾 𝑑𝑑 , 𝑑𝑑 < 𝑑𝑑𝑣𝑣
𝛾𝛾 𝑑𝑑 , 𝑑𝑑 > 𝑑𝑑𝑣𝑣



Edge vortices
 𝝈𝝈 = domain wall for phase of chiral Majorana fermion mode
 Robust: Majoranas are real-valued
 Chirality: flows along with fermions at edge velocity
 Edge vortex binds a MZM (even though no „core“): Ising anyon
 Crucial difference to FQH interferometer: Majorana fermion

modes (and edge vortices) are co-propagating → simpler 
schemes for accessing braiding statistics are possible

 Injection of deterministic (classical) edge vortices via fine-tuned
flux pulses → time-domain charge measurements could give
evidence for „guided braiding“ around bulk vortices

 Here: study quantum edge vortices
Beenakker et al., PRL 2019;  Adagideli et al., SciPost Phys. 2020



Quantum (dynamical) edge vortices

 No problems with in-gap states (no „normal“ core!)
 Insensitive to disorder (chirality!)
 Naturally movable non-Abelian particles, may be braided around

static counterparts

 Topological spin 𝑒𝑒2𝜋𝜋𝑖𝑖𝑠𝑠𝜎𝜎 = 𝑒𝑒
𝑖𝑖𝑖𝑖
8 and conformal dimension ℎ𝜎𝜎

determine equal-time correlator:

𝜎𝜎 𝑑𝑑 𝜎𝜎 0 ∝ 𝑒𝑒2𝜋𝜋𝑖𝑖𝑠𝑠𝜎𝜎 𝑑𝑑 −2ℎ𝜎𝜎 , 𝑠𝑠𝜎𝜎 = ℎ𝜎𝜎 = 1/16

Topological spin is related to non-Abelian braiding!  
Kitaev, Ann. Phys. 2006



Non-Abelian anyon interferometer

Add central floating superconducting (SC) island to Majorana
interferometer & measure AC conductance between metallic leads
 two Josephson line junctions at 𝑑𝑑 = ±𝐿𝐿 with Josephson energy 𝐸𝐸𝐽𝐽
 Central island: finite Coulomb charging energy 𝐸𝐸𝐶𝐶 ≪ 𝐸𝐸𝐽𝐽 → fast phase

slips 𝜑𝜑 → 𝜑𝜑 ± 2𝜋𝜋 can generate four edge vortices

Phase slips occur at rate    Γ ≈ 𝜔𝜔𝑝𝑝𝑒𝑒− 8𝐸𝐸𝐽𝐽 /𝐸𝐸𝐶𝐶 𝜔𝜔𝑝𝑝= 8𝐸𝐸𝐽𝐽𝐸𝐸𝐶𝐶
plasma frequency

Nava et al., arXiv 2024



Fine print: Model assumptions
 Plasma frequency 𝜔𝜔𝑝𝑝 ≫ Γ,Δ (Δ = induced SC pairing gap)

 Phase slips are effectively time-local events

 Strip width 2𝑊𝑊 ≫ 𝜉𝜉0 = 𝑣𝑣/Δ (SC coherence length)
 Upper and lower Majorana modes don‘t hybridize except at junctions

 Neglect above-gap quasiparticles: low temperatures 𝑘𝑘𝐵𝐵𝑇𝑇 < Δ
→ transport through interferometer only via Majorana fermion
modes (and 𝜎𝜎′𝑠𝑠) because of SC bulk gap

 Protected Dirac-Majorana conversion: include grounded SCs
 Equal path length on upper and lower arms (for now)



Chiral bosonization: Key steps
 Combine both 1D chiral Majorana fermions to one 1D chiral 

Dirac fermion:   Ψ 𝑑𝑑 = 1
2

(𝛾𝛾1 𝑑𝑑 + 𝑖𝑖𝛾𝛾2 𝑑𝑑 )

 Bosonize Dirac fermion using chiral boson field 𝜙𝜙 𝑑𝑑 :
Ψ 𝑑𝑑 ∝ e−𝑖𝑖𝑖𝑖 𝑥𝑥

→ edge vortex operators are simple in bosonized language
 For edge vortex pair at 𝑑𝑑 = 𝑑𝑑𝑗𝑗 (on top and bottom edge):

𝜎𝜎𝑡𝑡𝜎𝜎𝑏𝑏 = 𝑆𝑆−𝑒𝑒
𝑖𝑖
2𝑖𝑖(𝑥𝑥𝑗𝑗) + 𝐻𝐻. 𝑐𝑐.

 Auxiliary spin ensures proper Ising anyon fusion rules consistent with
CFT analysis Fendley et al., PRB 2007

 Conserved 𝑆𝑆𝑧𝑧 = ± 1
2

↔ total fermion parity conservation



Euclidean functional integral

 To compute AC conductance in linear response, we proceed
in imaginary time  0 ≤ 𝜏𝜏 ≤ 𝛽𝛽 = 1/𝑇𝑇

 Euclidean action (without voltage term):   𝑆𝑆 = 𝑆𝑆0 + 𝑆𝑆𝑓𝑓 + 𝑆𝑆𝑣𝑣
 Free action of chiral boson field 𝜙𝜙 𝑑𝑑, 𝜏𝜏 is quadratic:

𝑆𝑆0 = 1
4𝜋𝜋
∫ 𝑑𝑑𝜏𝜏∫ 𝑑𝑑𝑑𝑑𝜕𝜕𝑥𝑥𝜙𝜙 𝑖𝑖𝜕𝜕𝜏𝜏 + 𝑣𝑣𝜕𝜕𝑥𝑥 𝜙𝜙

Majorana fermion tunneling action at Josephson junctions
𝑆𝑆𝑓𝑓 = ∑𝑗𝑗

𝑣𝑣𝜆𝜆𝑗𝑗
2𝜋𝜋
∫ 𝑑𝑑𝜏𝜏𝜕𝜕𝑥𝑥𝜙𝜙(𝑑𝑑𝑗𝑗 , 𝜏𝜏) (include via unitary transformation)

Edge vortex creation/annihilation → nonlinear action:
𝑆𝑆𝑣𝑣 = Γ∫ 𝑑𝑑𝜏𝜏 cos 𝑤𝑤− 𝜏𝜏 + 4𝜋𝜋𝑆𝑆𝑧𝑧𝑠𝑠𝜎𝜎 + 2𝜋𝜋𝑛𝑛𝑔𝑔
𝑤𝑤−(𝜏𝜏) = 1

2
𝜙𝜙 𝐿𝐿, 𝜏𝜏 − 𝜙𝜙(−𝐿𝐿, 𝜏𝜏) backgate charge

offset parameter



Quantum impurity problem
Integrate out all boson fields except for 𝑤𝑤± 𝜏𝜏 via Lagrange 
multipliers (which are also integrated out)

𝑤𝑤+ 𝜏𝜏 = 1
2
𝜙𝜙 𝐿𝐿𝑐𝑐 + 𝑊𝑊, 𝜏𝜏 + 𝜙𝜙(−𝐿𝐿𝑐𝑐 + 𝑊𝑊, 𝜏𝜏)

𝑤𝑤− ↔ charge fluctuations on central island
�̇�𝑤+ ↔ electric current through interferometer

Linear response AC conductance 𝐺𝐺(𝜔𝜔) from Kubo formula
using −𝑖𝑖Ω → 𝜔𝜔 + 𝑖𝑖0+ in equilibrium current-current correlator:      

𝐾𝐾 Ω = −1 𝑛𝑛𝑣𝑣𝑖𝑖Ω 𝑒𝑒2

ℎ
�𝑤𝑤+ −𝑖𝑖Ω �𝑤𝑤+ 𝑖𝑖Ω 𝑆𝑆 �𝑤𝑤+ 𝑖𝑖Ω = ∫0

𝛽𝛽 𝑒𝑒−𝑖𝑖Ω𝜏𝜏𝑤𝑤+(𝜏𝜏)𝑑𝑑𝜏𝜏



AC conductance: Small Γ regime
For Γ ≪ max 𝑇𝑇, 𝑣𝑣

𝐿𝐿
:  nonlinearity ∝ Γ is RG-relevant

Perturbation theory in Γ yields AC conductance (GHz regime) 
𝐺𝐺 𝜔𝜔 = 𝐺𝐺 0 + 𝑖𝑖 −1 𝑛𝑛𝑣𝑣𝜔𝜔 𝐿𝐿𝑘𝑘𝑖𝑖𝑛𝑛 − 𝐶𝐶𝑒𝑒𝑓𝑓𝑓𝑓 + 𝑂𝑂(𝜔𝜔2)

DC conductance: 𝐺𝐺 0 = −1 𝑛𝑛𝑣𝑣 𝑒𝑒
2

ℎ
unaffected by fermion

tunneling nor edge vortex tunneling

Kinetic inductance of Majoranas:  𝐿𝐿𝑘𝑘𝑖𝑖𝑛𝑛 = 𝑒𝑒2

𝜋𝜋𝑣𝑣
𝐿𝐿𝑐𝑐 + 𝑊𝑊

Ising anyon statistics appears in effective capacitance
(measurable through phase delay between current & voltage)



Effective capacitance
Analytical result in perturbative regime Γ ≪ max 𝑇𝑇, 𝑣𝑣

𝐿𝐿
:           

𝐶𝐶𝑒𝑒𝑓𝑓𝑓𝑓 = Γ 𝑒𝑒
2𝐿𝐿2

2𝑣𝑣2
cos 𝜶𝜶 − 4𝜋𝜋𝑆𝑆𝑧𝑧𝑠𝑠𝜎𝜎

Δ
𝑇𝑇

sinh 2𝜋𝜋𝑇𝑇𝐿𝐿
𝑣𝑣

−4ℎ𝜎𝜎

𝜶𝜶 = 𝜋𝜋 𝜆𝜆1+𝜆𝜆2
4

− 2𝜋𝜋𝑛𝑛𝑔𝑔 = tunable phase (offset charge or finger gates at junctions)

Oscillations in 𝜶𝜶: anyon braiding
(topological spin 𝑠𝑠𝜎𝜎 appears!) 

Temperature dependence: extract
conformal dimension ℎ𝜎𝜎 from slope

Kitaev, Ann. Phys. 2006



Conclusions
 Introduction: Topological quantum computation and non-

Abelian statistics
 Chiral Majorana fermions
 Edge vortices = Ising anyons = flying Majorana zero

modes (MZMs)
 AC Conductance of Majorana interferometer can reveal

the topological spin of edge vortices → evidence for non-
Abelian braiding of Ising anyons from conductance
measurements

 Conclusions
A. Nava, R. Egger, F. Hassler, and D. Giuliano, arXiv:2403.03757

THANK YOU FOR YOUR ATTENTION!
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