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Overview
 Introduction: Topological quantum computation and non-

Abelian statistics
 Chiral Majorana fermions
 Edge vortices = Ising anyons = flying Majorana zero

modes (MZMs)
 AC Conductance of Majorana interferometer can reveal

the topological spin of edge vortices → evidence for non-
Abelian braiding of Ising anyons from conductance
measurements

 Conclusions
A. Nava, R. Egger, F. Hassler, and D. Giuliano, arXiv:2403.03757



Anyon braiding
 Exchange of anyons ↔
Adiabatic interlacing of world lines in
space-time („braiding“)
 Braiding Abelian anyons: only scalar phase factor in final 

state
 Braiding of non-Abelian anyons: final state related by

unitary matrix to initial state
 Topologically distinct braids (no continuous deformation

without cutting world lines)  ↔ different unitaries
→  building blocks for topological quantum computation

 Braiding operations connect locally indistinguishable ground
states → fault tolerance



Majorana fermion primer
Consider set of Majorana fermions
 Self-adjoint operators with Clifford algebra

different Majoranas anticommute like fermions 
 But:
 annihilation of particle & antiparticle recovers previous state
 Occupation number of single Majorana fermion ill-defined!

 We can count Majorana pairs: equivalent to conventional
complex fermion

→  single qubit 𝑛𝑛 = 𝑐𝑐+𝑐𝑐 = ⁄𝑖𝑖𝛾𝛾1𝛾𝛾2 + 1 2 = 0,1
𝛾𝛾1 = 𝑐𝑐 + 𝑐𝑐+, 𝛾𝛾2 = −𝑖𝑖 𝑐𝑐 − 𝑐𝑐+

equal-weight electron-hole superpositions

𝛾𝛾𝑖𝑖𝛾𝛾𝑗𝑗 + 𝛾𝛾𝑗𝑗𝛾𝛾𝑖𝑖 = 2𝛿𝛿𝑖𝑖𝑖𝑖

𝛾𝛾𝑗𝑗+𝛾𝛾𝑗𝑗 = 𝛾𝛾𝑗𝑗2 = 1

𝑐𝑐 = ⁄𝛾𝛾1 + 𝑖𝑖𝛾𝛾2 2



Nonlocality and degeneracy

Spatially separate Majorana
pair yields zero-energy
fermion mode ↔ qubit

 Information stored non-
locally & topologically
protected

E-µ

0



Braiding Ising anyons

 Ising anyon = simplest type of non-Abelian particle =  
MZM locked to, e.g. vortex core in topological superconductor

 Mathematically, MZMs cause branch cuts → sign changes
when cut is crossed during braiding operation

 For useful implementations, we need robust and reproducible
hardware platform!  



Abelian fractional statistics

 Tremendous progress in fractional
quantum Hall samples (Abelian
cases): Shot noise & anyon
collision experiments have
measured fractional statistical
exchange angles

 Difficult experiments, took >20 years
of development

 Abelian fractional exchange phases
may be simpler to measure through
conductance

Bartolomei, ... , Fève, Science 2020
Nakamura, ... , Manfra, Nature Phys. 2020

Schiller, Shapira, Stern, Oreg, PRL 2023



Non-Abelian braiding: How to observe it?
 So far only evidence for Majorana braiding from quantum

simulations on transmon circuits Stenger et al., Phys. Rev. Res. 2021, 

Harle et al., Nature Comm. 2023

→ but not useful for practical topological quantum computation
 Problem with existing MZM platforms: disorder causes

conventional subgap Andreev states → compete with MZM, 
hard to distinguish Aghaee et al. (Microsoft Q), PRB 2023

 Here: use analogy to (fractional) quantum Hall case → employ
edge vortex excitations of chiral Majorana fermion modes
as flying Ising anyons

 Chirality protects intrinsically against disorder!
 Which quantity to probe?  Proposals: Shot noise in 𝜈𝜈 = 5

2
FQH 

interferometer Bonderson et al., PRL 2006, Lee & Sim, Nat. Comm. 2022                   



Chiral Majorana interferometer
 Surface of 3D topological insulator = 

2D gapless Dirac fermions (1 cone)
 Create gap by deposition of either

superconductor (S) or magnet (M) 
→ at interface: gapless 1D chiral 
Majorana mode (charge neutral)

 Interferometer: use unit-efficiency 
conversion of chiral Dirac fermions
into pair of chiral Majorana fermions

 Copropagating Majorana modes!
 Electrical DC conductance:   

𝐺𝐺 = −1 𝑛𝑛𝑣𝑣 𝑒𝑒2/ℎ
probes number of bulk vortices Fu & Kane, PRL 2009

Akhmerov, Nilsson & Beenakker, PRL 2009



Chiral Majorana edge modes

Edge Hamiltonian∶
𝐻𝐻0 = −𝑣𝑣∫ 𝑑𝑑𝑑𝑑 𝛾𝛾 𝑥𝑥 𝜕𝜕𝑥𝑥𝛾𝛾(𝑥𝑥)

Chiral Majorana fermions are
Abelian (fermionic) particles with
𝛾𝛾 𝑥𝑥 = 𝛾𝛾+ 𝑥𝑥

𝛾𝛾 𝑥𝑥 , 𝛾𝛾 𝑥𝑥′ = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)
Non-Abelian Ising anyons: 
Chiral edge vortex 𝝈𝝈 at 𝑥𝑥 = 𝑥𝑥𝑣𝑣:

𝜎𝜎 𝑥𝑥𝑣𝑣 𝛾𝛾 𝑥𝑥 𝜎𝜎 𝑥𝑥𝑣𝑣 + = �−𝛾𝛾 𝑥𝑥 , 𝑥𝑥 < 𝑥𝑥𝑣𝑣
𝛾𝛾 𝑥𝑥 , 𝑥𝑥 > 𝑥𝑥𝑣𝑣



Edge vortices
 𝝈𝝈 = domain wall for phase of chiral Majorana fermion mode
 Robust: Majoranas are real-valued
 Chirality: flows along with fermions at edge velocity
 Edge vortex binds a MZM (even though no „core“): Ising anyon
 Crucial difference to FQH interferometer: Majorana fermion

modes (and edge vortices) are co-propagating → simpler 
schemes for accessing braiding statistics are possible

 Injection of deterministic (classical) edge vortices via fine-tuned
flux pulses → time-domain charge measurements could give
evidence for „guided braiding“ around bulk vortices

 Here: study quantum edge vortices
Beenakker et al., PRL 2019;  Adagideli et al., SciPost Phys. 2020



Quantum (dynamical) edge vortices

 No problems with in-gap states (no „normal“ core!)
 Insensitive to disorder (chirality!)
 Naturally movable non-Abelian particles, may be braided around

static counterparts

 Topological spin 𝑒𝑒2𝜋𝜋𝜋𝜋𝑠𝑠𝜎𝜎 = 𝑒𝑒
𝑖𝑖𝑖𝑖
8 and conformal dimension ℎ𝜎𝜎

determine equal-time correlator:

𝜎𝜎 𝑥𝑥 𝜎𝜎 0 ∝ 𝑒𝑒2𝜋𝜋𝜋𝜋𝑠𝑠𝜎𝜎 𝑥𝑥 −2ℎ𝜎𝜎 , 𝑠𝑠𝜎𝜎 = ℎ𝜎𝜎 = 1/16

Topological spin is related to non-Abelian braiding!  
Kitaev, Ann. Phys. 2006



Non-Abelian anyon interferometer

Add central floating superconducting (SC) island to Majorana
interferometer & measure AC conductance between metallic leads
 two Josephson line junctions at 𝑥𝑥 = ±𝐿𝐿 with Josephson energy 𝐸𝐸𝐽𝐽
 Central island: finite Coulomb charging energy 𝐸𝐸𝐶𝐶 ≪ 𝐸𝐸𝐽𝐽 → fast phase

slips 𝜑𝜑 → 𝜑𝜑 ± 2𝜋𝜋 can generate four edge vortices

Phase slips occur at rate    Γ ≈ 𝜔𝜔𝑝𝑝𝑒𝑒− 8𝐸𝐸𝐽𝐽 /𝐸𝐸𝐶𝐶 𝜔𝜔𝑝𝑝= 8𝐸𝐸𝐽𝐽𝐸𝐸𝐶𝐶
plasma frequency

Nava et al., arXiv 2024



Fine print: Model assumptions
 Plasma frequency 𝜔𝜔𝑝𝑝 ≫ Γ,Δ (Δ = induced SC pairing gap)

 Phase slips are effectively time-local events

 Strip width 2𝑊𝑊 ≫ 𝜉𝜉0 = 𝑣𝑣/Δ (SC coherence length)
 Upper and lower Majorana modes don‘t hybridize except at junctions

 Neglect above-gap quasiparticles: low temperatures 𝑘𝑘𝐵𝐵𝑇𝑇 < Δ
→ transport through interferometer only via Majorana fermion
modes (and 𝜎𝜎′𝑠𝑠) because of SC bulk gap

 Protected Dirac-Majorana conversion: include grounded SCs
 Equal path length on upper and lower arms (for now)



Chiral bosonization: Key steps
 Combine both 1D chiral Majorana fermions to one 1D chiral 

Dirac fermion:   Ψ 𝑥𝑥 = 1
2

(𝛾𝛾1 𝑥𝑥 + 𝑖𝑖𝛾𝛾2 𝑥𝑥 )

 Bosonize Dirac fermion using chiral boson field 𝜙𝜙 𝑥𝑥 :
Ψ 𝑥𝑥 ∝ e−𝑖𝑖𝑖𝑖 𝑥𝑥

→ edge vortex operators are simple in bosonized language
 For edge vortex pair at 𝑥𝑥 = 𝑥𝑥𝑗𝑗 (on top and bottom edge):

𝜎𝜎𝑡𝑡𝜎𝜎𝑏𝑏 = 𝑆𝑆−𝑒𝑒
𝑖𝑖
2𝜙𝜙(𝑥𝑥𝑗𝑗) + 𝐻𝐻. 𝑐𝑐.

 Auxiliary spin ensures proper Ising anyon fusion rules consistent with
CFT analysis Fendley et al., PRB 2007

 Conserved 𝑆𝑆𝑧𝑧 = ± 1
2

↔ total fermion parity conservation



Euclidean functional integral

 To compute AC conductance in linear response, we proceed
in imaginary time  0 ≤ 𝜏𝜏 ≤ 𝛽𝛽 = 1/𝑇𝑇

 Euclidean action (without voltage term):   𝑆𝑆 = 𝑆𝑆0 + 𝑆𝑆𝑓𝑓 + 𝑆𝑆𝑣𝑣
 Free action of chiral boson field 𝜙𝜙 𝑥𝑥, 𝜏𝜏 is quadratic:

𝑆𝑆0 = 1
4𝜋𝜋
∫ 𝑑𝑑𝑑𝑑∫ 𝑑𝑑𝑑𝑑𝜕𝜕𝑥𝑥𝜙𝜙 𝑖𝑖𝜕𝜕𝜏𝜏 + 𝑣𝑣𝜕𝜕𝑥𝑥 𝜙𝜙

Majorana fermion tunneling action at Josephson junctions
𝑆𝑆𝑓𝑓 = ∑𝑗𝑗

𝑣𝑣𝜆𝜆𝑗𝑗
2𝜋𝜋
∫ 𝑑𝑑𝑑𝑑𝜕𝜕𝑥𝑥𝜙𝜙(𝑥𝑥𝑗𝑗 , 𝜏𝜏) (include via unitary transformation)

Edge vortex creation/annihilation → nonlinear action:
𝑆𝑆𝑣𝑣 = Γ∫ 𝑑𝑑𝑑𝑑 cos 𝑤𝑤− 𝜏𝜏 + 4𝜋𝜋𝑆𝑆𝑧𝑧𝑠𝑠𝜎𝜎 + 2𝜋𝜋𝑛𝑛𝑔𝑔
𝑤𝑤−(𝜏𝜏) = 1

2
𝜙𝜙 𝐿𝐿, 𝜏𝜏 − 𝜙𝜙(−𝐿𝐿, 𝜏𝜏) backgate charge

offset parameter



Quantum impurity problem
Integrate out all boson fields except for 𝑤𝑤± 𝜏𝜏 via Lagrange 
multipliers (which are also integrated out)

𝑤𝑤+ 𝜏𝜏 = 1
2
𝜙𝜙 𝐿𝐿𝑐𝑐 + 𝑊𝑊, 𝜏𝜏 + 𝜙𝜙(−𝐿𝐿𝑐𝑐 + 𝑊𝑊, 𝜏𝜏)

𝑤𝑤− ↔ charge fluctuations on central island
𝑤̇𝑤+ ↔ electric current through interferometer

Linear response AC conductance 𝐺𝐺(𝜔𝜔) from Kubo formula
using −𝑖𝑖Ω → 𝜔𝜔 + 𝑖𝑖0+ in equilibrium current-current correlator:      

𝐾𝐾 Ω = −1 𝑛𝑛𝑣𝑣𝑖𝑖Ω 𝑒𝑒2

ℎ
�𝑤𝑤+ −𝑖𝑖Ω �𝑤𝑤+ 𝑖𝑖Ω 𝑆𝑆 �𝑤𝑤+ 𝑖𝑖Ω = ∫0

𝛽𝛽 𝑒𝑒−𝑖𝑖Ω𝜏𝜏𝑤𝑤+(𝜏𝜏)𝑑𝑑𝑑𝑑



AC conductance: Small Γ regime
For Γ ≪ max 𝑇𝑇, 𝑣𝑣

𝐿𝐿
:  nonlinearity ∝ Γ is RG-relevant

Perturbation theory in Γ yields AC conductance (GHz regime) 
𝐺𝐺 𝜔𝜔 = 𝐺𝐺 0 + 𝑖𝑖 −1 𝑛𝑛𝑣𝑣𝜔𝜔 𝐿𝐿𝑘𝑘𝑘𝑘𝑘𝑘 − 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑂𝑂(𝜔𝜔2)

DC conductance: 𝐺𝐺 0 = −1 𝑛𝑛𝑣𝑣 𝑒𝑒
2

ℎ
unaffected by fermion

tunneling nor edge vortex tunneling

Kinetic inductance of Majoranas:  𝐿𝐿𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑒𝑒2

𝜋𝜋𝜋𝜋
𝐿𝐿𝑐𝑐 + 𝑊𝑊

Ising anyon statistics appears in effective capacitance
(measurable through phase delay between current & voltage)



Effective capacitance
Analytical result in perturbative regime Γ ≪ max 𝑇𝑇, 𝑣𝑣

𝐿𝐿
:           

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = Γ 𝑒𝑒
2𝐿𝐿2

2𝑣𝑣2
cos 𝜶𝜶 − 4𝜋𝜋𝑆𝑆𝑧𝑧𝑠𝑠𝜎𝜎

Δ
𝑇𝑇

sinh 2𝜋𝜋𝜋𝜋𝜋𝜋
𝑣𝑣

−4ℎ𝜎𝜎

𝜶𝜶 = 𝜋𝜋 𝜆𝜆1+𝜆𝜆2
4

− 2𝜋𝜋𝑛𝑛𝑔𝑔 = tunable phase (offset charge or finger gates at junctions)

Oscillations in 𝜶𝜶: anyon braiding
(topological spin 𝑠𝑠𝜎𝜎 appears!) 

Temperature dependence: extract
conformal dimension ℎ𝜎𝜎 from slope

Kitaev, Ann. Phys. 2006



Conclusions
 Introduction: Topological quantum computation and non-

Abelian statistics
 Chiral Majorana fermions
 Edge vortices = Ising anyons = flying Majorana zero

modes (MZMs)
 AC Conductance of Majorana interferometer can reveal

the topological spin of edge vortices → evidence for non-
Abelian braiding of Ising anyons from conductance
measurements

 Conclusions
A. Nava, R. Egger, F. Hassler, and D. Giuliano, arXiv:2403.03757

THANK YOU FOR YOUR ATTENTION!
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