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Overview
 Brief introduction to Majorana bound states   

Alicea, Rep. Prog. Phys. 2012

 Majorana-Cooper box: a Majorana-based 
„quantum impurity spin“ 

 ‚Topological‘ Kondo effect: a single box 
connected to normal leads → stable non-Fermi liquid 
fixed point of multi-channel Kondo type 

 2D array of boxes:  towards realistic 
implementations of Majorana surface codes 

Landau, Plugge, Sela, Altland, Albrecht & Egger, preprint;
Terhal, Hassler & DiVincenzo, PRL 2012; 

Vijay, Hsieh & Fu, arXiv:1504.01724

Beri & Cooper, PRL 2012 
Altland & Egger, PRL 2013

Altland, Beri, Egger & Tsvelik, PRL 2014



Majorana bound states
 Majorana fermion is its own antiparticle
 carries no charge
 real-valued solution of relativistic Dirac equation

 Majorana bound state (MBS): a localized 
zero mode excitation 
 Condensed matter realizations:  equal weight 

superposition of electron and hole states in 
superconductors
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Majorana algebra
Consider set of Majorana bound states       

at different locations in space  
Self-adjoint operators
Clifford algebra
Different Majorana operators anticommute just 

like fermions 
But:
 annihilation of particle & antiparticle recovers previous 

state
 Occupation number of single MBS is ill-defined 
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Counting Majoranas

count states of a Majorana pair via non-local 
auxiliary fermion occupation number

MBS = „half a fermion“,  
fractionalized zero mode
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MBS in p-wave superconductors
 Bogoliubov quasiparticles in s-wave BCS 

superconductors?
spin spoils it: no MBS possible!

 better: spinless quasiparticles in p-wave 
superconductor

 Energy at Fermi level:
 Vortex in 2D p-wave superconductor hosts MBS
 Experimentally most promising route (at present): 
MBS as end states of 1D p-wave superconductors: 

Kitaev chain
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Realizing the Kitaev chain
InAs or InSb helical nanowires host 
Majoranas due to interplay of
• strong Rashba spin orbit field
• magnetic Zeeman field
• proximity-induced pairing

Oreg, Refael & von Oppen, PRL 2010
Lutchyn, Sau & Das Sarma, PRL 2010

Transport signature of Majoranas: 
Zero-bias conductance peak due 
to resonant Andreev reflection

Bolech & Demler, PRL 2007
Law, Lee & Ng, PRL 2009
Flensberg, PRB 2010

Mourik et al., Science 2012

see also: Rokhinson et al., Nat. Phys. 2012; Deng et al., 
Nano Lett. 2012; Das et al., Nat. Phys. 2012; Churchill et 
al., PRB 2013; Nadj-Perge et al., Science 2014;                

Copenhagen group (new results)



Majorana-Cooper box

N helical nanowires proximitized by same 
mesoscopic floating superconductor
→ Coulomb charging energy important
On energy scales below proximity gap: 

 2N Majorana end states (at E=0 for long wires)
→ N fermionic zero modes 

 Condensate gives bosonic zero mode
Cooper pair number Nc, conjugate supercond. phase φ
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Hützen et al., PRL 2012

Beri & Cooper, PRL 2012
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Quantum „impurity spin“
For near integer gate parameter: Uniqueness of 
equilibrium charge state implies total parity 
constraint

 Degeneracy of Majorana sector = 2N-1

parity constraint removes half the states
 For N>1 „quantum impurity spin“ nonlocally 

encoded by Majorana bound states on box
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Topological Kondo effect

 Couple „impurity spin“ to normal leads (e.g. 
overhanging helical nanowire parts):  
Cotunneling causes „exchange coupling“

 Robust non-Fermi liquid multi-channel Kondo 
fixed point 

 observable in electric conductance or shot noise 
measurements

Beri & Cooper, PRL 2012
Altland & Egger, PRL 2013;  Beri, PRL 2013

Altland, Beri, Egger & Tsvelik,  PRL 2014
Zazunov, Altland & Egger, New J. Phys. 2014



Normal leads
1D helical Dirac fermions describe the normal 
wires (lead j=1,...,M)
 Semi-infinite leads, tunnel-coupled individually to 

Majorana states at x=0 
 Pair of right/left movers for x>0, with

„Unfolded“ Hamiltonian
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Tunneling Hamiltonian

 Respect charge conservation (floating device)
 Spin structure of Majorana states encoded in 

tunnel matrix elements
 Next step: Schrieffer-Wolff transformation to 

project onto degenerate ground state of box
Beri & Cooper, PRL 2012
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Topological Kondo effect

Majorana bilinears                  
 Majorana ‚reality‘ condition: „quantum impurity spin“ 

obeys SO(M) algebra  [instead of SU(2)] 

 Nonlocality ensures stability of Kondo fixed point: 
deviations from isotropy are RG irrelevant
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Example: Minimal case M=3
allows for spin-1/2 representation

 can be represented by standard Pauli matrices
 „spin“ exchange-coupled to effective spin-1 lead 

→  overscreened multi-channel Kondo effect 
Residual ground state degeneracy 
local non-Fermi liquid behavior
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Linear conductance tensor

asymptotic low-temperature behavior

 Non-integer scaling dimension
implies non-Fermi liquid behavior 

 completely isotropic multi-terminal junction
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Majorana surface code
 Network of interacting Majorana fermions → 

realization of Majorana surface code  
Terhal, Hassler & DiVincenzo, PRL 2012;  Vijay, Hsieh & Fu, arXiv:1504.01724

 Surface code quantum computation
 Encode ‚logical‘ qubit by entangling many physical 

qubits
 Comparatively simple 2D array layouts 
 Error tolerance orders of magnitude better than in 

alternative approaches 
 Error detection without need for active error 

correction & controlled by classical software
Review:    Fowler, Mariantoni, Martinis & Clarke, PRA 2012



Scalability issues
 Reasonably fault-tolerant logical qubit needs 

>103 physical qubits  →  we need about 108

physical qubits  to factorize 100-digit integer
 Maximal simplicity in implementation and access 

to physical qubits required
 Semiconductor Majorana layouts may offer this 

simplicity
 Single-step readout without ancilla qubits possible 

Vijay, Hsieh & Fu, arXiv:1504.01724

 Qubit readout & manipulation through tunnel probes &
SETs, without radiation fields or flux interferometry   

Landau, Plugge, Sela, Altland, Albrecht & Egger, preprint



Blueprint: 2D array of boxes

Majorana-Cooper box



2D array of Majorana-Cooper boxes

 Building block: Majorana-Cooper box with 
two proximitized helical nanowires
 joined by superconductor slab: finite common 

charging energy
 each box hosts M=4 Majorana zero modes

 All wires in array parallel: homogeneous Zeeman field  
→  simultaneous topological transition

 Now couple neighboring boxes by tunnel 
bridges ( ) h.c.
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Stabilizers: plaquette operators
 Low-energy excitations of array correspond 

to minimal loop structures 
 Minimal loop contains 8 Majorana operators

 Hermitian plaquette operator for loop no. n

 Set of mutually commuting operators
 Plaquette eigenvalues = ±1: simultaneously 

measurable set of physical qubits
 serve as stabilizers of the surface code
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Plaquette Hamiltonian
 Schrieffer-Wolff transformation → low-energy theory

 Amplitude cn for n-th loop contains product of four tunnel 
amplitudes along loop

 Surface code works although the Re(cn) are generally 
uncorrelated random energies

 How to measure and manipulate plaquettes?
 Essential ingredient for surface code quantum information 

processing
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Surface code operation principles

 Permanent repetition of sequential stabilizer 
measurements 
 Project code onto eigenstate of stabilizer system
 Occasional erroneous plaquette flips are simply 

recorded (& corrected by classical software), no 
active error correction needed

 Punching „holes“ by ceasing measurements at 
plaquette(s): binary eigenstates of Wilson loops 
around holes serve as logical qubits

 need maximally simple readout & controlled 
flip of stabilizers 

Fowler et al., PRA 2012



Attaching tunnel probes and SETs

Read out of stabilizers:  tunnel conductance via attached leads, 
noninvasive (no plaquette flip) measurement

Controlled plaquette flip:  Transfer 1 electron through code by changing
gate voltages on attached pair of SETs



Tunnel conductance 

Attach pair of tunnel contacts (normal leads) 

anticommutes with the two        containing  
... and commutes with all other  

Neighboring belong to same       pair 
→ double flip, i.e., all plaquettes remain invariant 
→ this specific conductance measurement is 

noninvasive
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Quantitative results for conductance
Schrieffer-Wolff transformation with leads : 
effective coupling Hamiltonian

 two paths around plaquettes A & B
 „direct“ amplitude ξ from 1→2  vanishes for 

integer ng (but finite away from valley center)
 Tunnel conductance from lead 1 → 2 follows from 

perturbation theory
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Tunnel conductance

Interference terms: tunnel conductance is sensitive 
to A and B plaquette eigenvalues
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Manipulation: flipping plaquettes
 Use pair of SETs to adiabatically pump single 

electron through array, tunneling in (out) at
 Change SET configuration (1,0) → (0,1) via gate 

voltages Flensberg, PRL 2011

 Arbitrary Majorana pair has 0, 1, or 2 plaquettes in 
common 

 This electron transfer flips   4, 2, or 0 plaquettes
 No plaquette flipped: recover non-invasive case
 Minimal excitation: 2 flipped plaquettes, cf. figure

 Activation of SET pairs at arbitrary places:   
create and move excitations arbitrarily

( )'γγ



Towards hardware layout 



Conclusions
 Brief introduction to Majorana bound states   

Alicea, Rep. Prog. Phys. 2012

 Majorana-Cooper box: „quantum impurity spin“ 
 ‚topological‘ Kondo effect:  single box connected 

to normal leads stable non-Fermi liquid fixed point of 
multi-channel Kondo type 

 2D array of boxes:  towards realistic 
implementations of Majorana surface codes 

Landau, Plugge, Sela, Altland, Albrecht & Egger, preprint;
Terhal, Hassler & DiVincenzo, PRL 2012; 

Vijay, Hsieh & Fu, arXiv:1504.01724

Beri & Cooper, PRL 2012 
Altland & Egger, PRL 2013

Altland, Beri, Egger & Tsvelik, PRL 2014
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