Theory of electronic transport in carbon nanotubes

Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar, July 2004

Electronic transport in nanotubes

Most mesoscopic effects have been observed

(see seminar of C.Schönenberger)

- Disorder-related: MWNTs
- Strong-interaction effects
- Kondo and dot physics
- Superconductivity
- Spin transport
- Ballistic, localized, diffusive transport
- What has theory to say?

Overview

- Field theory of ballistic single-wall nanotubes:
 Luttinger liquid and beyond (A.O. Gogolin)
- Multi-terminal geometries
 - Y junctions (S. Chen & B. Trauzettel)
 - Crossed nanotubes: Coulomb drag (A. Komnik)
- Multi-wall nanotubes: Nonperturbative Altshuler-Aronov effects (A.O. Gogolin)
- Superconductivity in ropes of nanotubes

(A. De Martino)

Metallic SWNTs: Dispersion relation

- Basis of graphite sheet contains two atoms: two sublattices p=+/-, equivalent to right/left movers r=+/-
- Two degenerate Bloch waves at each Fermi point K,K´ (α=+/-)

$$\phi_{p\alpha}(x,y)$$

SWNT: Ideal 1D quantum wire

- Transverse momentum quantization: k_y =0 is only relevant transverse mode, all others are far away
- 1D quantum wire with two spin-degenerate transport channels (bands)
- Massless 1D Dirac Hamiltonian
- Two different momenta for backscattering:

$$q_F = \left| E_F \right| / v_F < k_F = \left| \vec{K} \right|$$

What about disorder?

- Experimentally observed mean free paths in high-quality metallic SWNTs $\ell \geq 1 \mu m$
- Ballistic transport in not too long tubes
- No diffusive regime: Thouless argument gives localization length $\xi = N_{bands} \ell = 2\ell$
- Origin of disorder largely unknown. Probably substrate inhomogeneities, defects, bends and kinks, adsorbed atoms or molecules,...
- For now focus on ballistic regime

Field theory of interacting SWNTs

Egger & Gogolin, PRL 1997, EPJB 1998 Kane, Balents & Fisher, PRL 1997

- Keep only two bands at Fermi energy
- Low-energy expansion of electron operator:

$$\Psi_{\sigma}(x,y) = \sum_{p,\alpha} \Psi_{p\alpha\sigma}(x) \phi_{p\alpha}(x,y)$$

$$\phi_{p\alpha}(x,y) = \frac{1}{\sqrt{2\pi R}} e^{-i\alpha \vec{K} \cdot \vec{r}}$$

- 1D fermion operators: Bosonization applies
- Inserting expansion into full SWNT Hamiltonian gives 1D field theory

Interaction potential (no gates...)

Second-quantized interaction part:

$$H_{I} = \frac{1}{2} \sum_{\sigma\sigma} \int d\vec{r} d\vec{r} ' \Psi_{\sigma}^{+} (\vec{r}) \Psi_{\sigma'}^{+} (\vec{r}')$$

$$\times U (\vec{r} - \vec{r}') \Psi_{\sigma'} (\vec{r}') \Psi_{\sigma} (\vec{r})$$

Unscreened potential on tube surface

$$U = \frac{e^{2} / \kappa}{\sqrt{(x - x')^{2} + 4R^{2} \sin^{2} \left[\frac{y - y'}{2R}\right] + a_{z}^{2}}}$$

1D fermion interactions

- Insert low-energy expansion
- Momentum conservation allows only two processes away from half-filling
 - Forward scattering: "Slow" density modes, probes long-range part of interaction
 - Backscattering: "Fast" density modes, probes short-range properties of interaction
 - Backscattering couplings scale as 1/R, sizeable only for ultrathin tubes

Backscattering couplings

with coupling constant

$$b = 0.1e^2 / R$$
 $f = 0.05e^2 / R$

Bosonized form of field theory

- Four bosonic fields, index a=c+,c-,s+,s-
 - Charge (c) and spin (s)
 - Symmetric/antisymmetric K point combinations
- Luttinger liquid & nonlinear backscattering

$$H = \frac{v_F}{2} \int dx \sum_a \left[\Pi_a^2 + g_a^{-2} (\partial_x \varphi_a)^2 \right] +$$

$$+ f \int dx \left[-\cos \varphi_{c-} \cos \varphi_{s-} - \cos \varphi_{c-} \cos \varphi_{s+} + \cos \varphi_{s-} \cos \varphi_{s+} \right] +$$

$$+ b \int dx \left[\cos \varphi_{s-} + \cos \vartheta_{s-} \right] \cos \varphi_{c-}$$

Luttinger parameters for SWNTs

- Bosonization gives $g_{a\neq c+} \cong 1$
- Logarithmic divergence for unscreened interaction, cut off by tube length

$$g \equiv g_{c+} = \left[1 + \frac{8e^2}{\pi \kappa \hbar v_F} \ln\left(\frac{L}{2\pi R}\right)\right]^{-1/2} =$$

$$= \frac{1}{\sqrt{1 + 2E_c/\Delta}} \approx 0.2$$

Pronounced non-Fermi liquid correlations

Phase diagram (quasi long range order)

- Effective field theory can be solved in practically exact way
- Low temperature phases matter only for ultrathin tubes or in sub-mKelvin regime

$$T_f = (f/b)T_b$$

$$k_B T_b = De^{-v_F/b} \propto e^{-R/R_b}$$

Tunneling DoS for nanotube

- Power-law suppression of tunneling DoS reflects orthogonality catastrophe: Electron has to decompose into true quasiparticles
- Experimental evidence for Luttinger liquid in tubes available from TDoS
- Explicit calculation gives

$$v(x, E) = \operatorname{Re} \int_{0}^{\infty} dt e^{iEt} \langle \Psi(x, t) \Psi^{+}(x, 0) \rangle \propto E^{\eta}$$

Geometry dependence:

$$\eta_{bulk} = (g+1/g-2)/4$$

$$\eta_{end} = (1/g-1)/2 > 2\eta_{bulk}$$

Conductance probes tunneling DoS

Conductance across kink:

$$G \propto T^{2\eta_{end}}$$

Universal scaling of nonlinear conductance:

Delft group

$$T^{-2\eta_{end}} dI / dV \propto \sinh \left[\frac{eV}{2k_B T} \right] \left| \Gamma \left(1 + \eta_{end} + \frac{ieV}{2\pi k_B T} \right) \right|^2$$

$$\cdot \left[\coth \left(\frac{eV}{2k_B T} \right) - \frac{1}{2\pi} \operatorname{Im} \Psi \left(1 + \eta_{end} + \frac{ieV}{2\pi k_B T} \right) \right]$$

Evidence for Luttinger liquid

gives g around 0.22

Yao et al., Nature 1999

Multi-terminal circuits: Crossed tubes

By chance...

Fuhrer et al., Science 2000

Fusion: Electron beam welding (transmission electron microscope)

Terrones et al., PRL 2002

Nanotube Y junctions

Li et al., Nature 1999

Landauer-Büttiker type theory for Luttinger liquids?

- Standard scattering approach useless:
 - Elementary excitations are fractionalized quasiparticles, not electrons
 - No simple scattering of electrons, neither at junction nor at contact to reservoirs
- Generalization to Luttinger liquids
 - ullet Coupling to reservoirs via radiative boundary conditions (or g(x) approach)
 - Junction: Boundary condition plus impurities

Description of junction (node)

Chen, Trauzettel & Egger, PRL 2002 Egger, Trauzettel, Chen & Siano, NJP 2003

- Landauer-Büttiker: Incoming and outgoing states related via scattering matrix $\Psi_{out}(0) = S\Psi_{in}(0)$
- Difficult to handle for correlated systems
- What to do?

Some recent proposals ...

Perturbation theory in interactions

Lal, Rao & Sen, PRB 2002

- Perturbation theory for almost no transmission
 Safi, Devillard & Martin, PRL 2001
- Node as island Nayak, Fisher, Ludwig & Lin, PRB 1999
- Node as ring Chamon, Oshikawa & Affleck, PRL 2003
- Node boundary condition for ideal symmetric junction (exactly solvable)
 - additional impurities generate arbitrary S matrices,
 no conceptual problem Chen, Trauzettel & Egger, PRL 2002

Ideal symmetric junctions

■ *N>2* branches, junction with *S* matrix

$$S = \begin{pmatrix} z-1 & z & \dots & z \\ z & z-1 & \dots & z \\ \dots & \dots & \dots & \dots \\ z & z & \dots & z-1 \end{pmatrix} \qquad \begin{aligned} z &= \frac{2}{N+i\lambda}, \lambda \geq 0 \\ \text{Crossover from full to no transmission tuned by } \lambda \\ \text{Texier & Montambaux, JP A 200} \end{aligned}$$

$$z = \frac{2}{N + i\lambda}, \lambda \ge 0$$

Texier & Montambaux, JP A 2001

implies wavefunction matching at node

$$\Psi_1(0) = \Psi_2(0) = \dots = \Psi_N(0)$$

$$\Psi_{j}(0) = \Psi_{j,in}(0) + \Psi_{j,out}(0)$$

Boundary conditions at the node

- Wavefunction matching implies density matching $\rho_1(0) = ... = \rho_N(0)$
 - can be handled for Luttinger liquid
- Additional constraints:
 - $\square \text{ Kirchhoff node rule } \sum_{i} I_{i} = 0$
 - Gauge invariance
- Nonlinear conductance matrix can then be computed exactly for arbitrary parameters

$$G_{ij} = \frac{e}{h} \frac{\partial I_i}{\partial \mu_j}$$

Solution for Y junction with g=1/2

Nonlinear conductance:

$$G_{ii} = \frac{8}{9} \left(1 - \frac{\partial V_i}{\partial U_i} \right) + \frac{2}{9} \sum_{j \neq i} \left(1 - \frac{\partial V_j}{\partial U_j} \right)$$

with

$$\frac{eV_i}{2T_B} = \operatorname{Im} \Psi \left(\frac{1}{2} + \frac{T_B + ie(U_i - V_i / 2)}{2\pi T} \right)$$

$$T_B / D = w_0^{1/(1-g)}$$

$$w_0(N,\lambda) = \frac{2(\sqrt{N^2 + \lambda^2} - \sqrt{2N})}{\sqrt{N(N-2) + \lambda^2}}$$

Nonlinear conductance

$$\mu_1 = \varepsilon_F + eU$$

$$\mu_2 = \mu_3 = \varepsilon_F$$

Ideal junction: Fixed point

- Symmetric system breaks up into disconnected wires at low energies
- Only stable fixed point
- Typical Luttinger power law for all conductance coefficients

Asymmetric Y junction

- Add one impurity of strength W in tube 1 close to node
- Exact solution possible for g=3/8 (Toulouse limit in suitable rotated picture)
- Transition from truly insulating node to disconnected tube 1 + perfect wire 2+3

Asymmetric Y junction: g=3/8

Full solution:

$$I_1 = I_1^0 - \delta I, I_{2,3} = I_{2,3}^0 + \delta I / 2$$

Asymmetry contribution

$$\pi \delta I = eW_B \text{ Im } \Psi \left(\frac{1}{2} + \frac{W_B + 2\pi i \left[I_1^0 - \delta I / 2 \right] / e}{2\pi T} \right)$$

$$W_B = \pi W^2 / D$$

Strong asymmetry limit:

$$I_1 = 0, I_{2,3} = I_{2,3}^0 + I_1^0 / 2$$

Crossed tubes: Theory vs. experiment

Komnik & Egger, PRL 1998, EPJB 2001 Gao, Komnik, Egger, Glattli, Bachtold, PRL 2004

- Weakly coupled crossed nanotubes
 - Single-electron tunneling between tubes irrelevant
 - Electrostatic coupling relevant for strong interactions
- Without tunneling: Local Coulomb drag

Characterization: Tunneling DoS

- Tunneling conductance through crossing:
 Power law, consistent with Luttinger liquid
- Quantitative fit gives g=0.16
- Evidence for Luttinger liquid beyond TDoS?

Dependence on transverse current

- Experimental data show suppression of zero-bias anomaly when current flows through transverse tube
- Coulomb blockade or heating mechanisms can be ruled out
- Prediction of Luttinger liquid theory?

Hamiltonian for crossed tubes

 Without tunneling: Electrostatic coupling and crossing-induced backscattering

$$H = H_0^A + H_0^B + \lambda_0 \rho_A(0) \rho_B(0) + \sum_{i=A/B} \lambda_i \rho_i(0)$$

$$H_0^i = \frac{1}{2} \int dx \left[\Pi_i^2 + (\partial_x \varphi_i)^2 \right]$$

Density operator:

$$\rho_{A/B}(x) \propto \cos\left[\sqrt{16\pi g}\,\varphi_{A/B}(x)\right]$$

Renormalization group equations

Lowest-order RG equations:

$$\frac{d\lambda_0}{dl} = (1 - 8g)\lambda_0 + 2\lambda_A \lambda_B$$

$$\frac{d\lambda_{A/B}}{dl} = (1 - 4g)\lambda_{A/B}$$

Solution:

$$\begin{split} &\lambda_{A/B}(l) = e^{(1-4g)l} \lambda_{A/B}(0) \\ &\lambda_{0}(l) = e^{(1-8g)l} \left[\lambda_{0}(0) - 2\lambda_{A}(0) \lambda_{B}(0) \right] + 2e^{(2-8g)l} \lambda_{A}(0) \lambda_{B}(0) \end{split}$$

Here: inter-tube coupling most relevant!

Low-energy solution

- Keeping only inter-tube coupling, problem is exactly solvable by switching to symmetric and antisymmetric (±) boson fields
- For g=3/16=0.1875, particularly simple:

$$I_{A/B} = \frac{4e^2}{h} \left[V_{A/B} - \frac{U_+ \pm U_-}{\sqrt{2}} \right]$$

$$eU_{\pm} = 2k_B T_B \text{ Im } \Psi \left(\frac{1}{2} + \frac{k_B T_B + ie(V_{\pm} - U_{\pm})}{2\pi k_B T} \right)$$

$$V_{\pm} = \frac{V_A \pm V_B}{\sqrt{2}}$$

Comparison to experimental data

New evidence for Luttinger liquid

Gao, Komnik, Egger, Glattli & Bachtold, PRL 2004

- Rather good agreement, only one fit parameter: $T_B = 11.6 \, K$
- No alternative explanation works
- Agreement is taken as new evidence for Luttinger liquid in nanotubes, beyond previous tunneling experiments
- Additional evidence from photoemission experiments
 Ishii et al., Nature 2003

Coulomb drag: Transconductance

- Strictly local coupling: Linear transconductance G₂₁ always vanishes
- Finite length: Couplings in +/- sectors differ

$$\lambda_0 \to \lambda_{\pm} = \frac{\lambda_0}{L} \int_{-L/2}^{L/2} dx \cos \left[2(k_{F,A} \pm k_{F,B}) x \right]$$

$$T_B^{\pm} / D = \left(\frac{\lambda_{\pm}}{D} \right)^{1/(1-2g)}$$

$$T_B^+ \leq T_B^-$$

Now nonzero linear transconductance, except at T=0!

Linear transconductance: g=1/4

Absolute Coulomb drag

Averin & Nazarov, PRL 1998 Flensberg, PRL 1998 Komnik & Egger, PRL 1998, EPJB 2001

For long contact & low temperature (but finite): Transconductance approaches maximal value

$$G_{21}(T \neq 0, T_B^+ / T_B^- \to 0) = \frac{e^2 / h}{2}$$

Coulomb drag shot noise

Trauzettel, Egger & Grabert, PRL 2002

- Shot noise at T=0 gives important information beyond conductance $P(\omega) = \int dt e^{i\omega t} \left\langle \delta I(t) \delta I(0) \right\rangle$
- For two-terminal setup & one weak impurity: DC shot noise carries no information about fractional charge $P = 2eI_{BS}$

Ponomarenko & Nagaosa, PRB 1999

■ Crossed nanotubes: For $V_A = 0, V_B \neq 0 \Rightarrow P_A \neq 0$ must be due to cross voltage (drag noise)

Shot noise transmitted to other tube

- Mapping to decoupled two-terminal problems in ± channels implies $\langle \delta I_{+}(t) \delta I_{-}(0) \rangle = 0$
- Consequence: Perfect shot noise locking

$$P_A = P_B = (P_+ + P_-)/2$$

- Noise in tube A due to cross voltage is exactly equal to noise in tube B
- Requires strong interactions, g<1/2
- Effect survives thermal fluctuations

Multi-wall nanotubes: The disorderinteraction problem

- Russian doll structure, electronic transport in MWNTs usually in outermost shell only
- Energy scales one order smaller
- Typically $N_{bands} \approx 20$ due to doping
- Inner shells can also create `disorder´
 - □ Experiments indicate mean free path $\ell \approx R...10R$
 - Ballistic behavior on energy scales

$$E \tau > 1, \tau = \ell / v_F$$

Tunneling between shells

Maarouf, Kane & Mele, PRB 2001

- Bulk 3D graphite is a metal: Band overlap, tunneling between sheets quantum coherent
- In MWNTs this effect is strongly suppressed
 - Statistically 1/3 of all shells metallic (random chirality), since inner shells undoped
 - For adjacent metallic tubes: Momentum mismatch, incommensurate structures
 - Coulomb interactions suppress single-electron tunneling between shells

Interactions in MWNTs: Ballistic limit

Egger, PRL 1999

- Long-range tail of interaction unscreened
- Luttinger liquid survives in ballistic limit, but Luttinger exponents are close to Fermi liquid, e.g. $\eta \propto \sqrt[1]{N_{bands}}$
- End/bulk tunneling exponents are at least one order smaller than in SWNTs
- Weak backscattering corrections to conductance suppressed even more!

Experiment: TDoS of MWNT

Bachtold et al., PRL 2001

- TDoS observed from conductance through tunnel contact
- Power law zero-bias anomalies
- Scaling properties similar to a Luttinger liquid, but: exponent larger than expected from Luttinger theory

Tunneling DoS of MWNTs

Bachtold et al., PRL 2001

Geometry dependence

$$\eta_{end} = 2\eta_{bulk}$$

Interplay of disorder and interaction

Egger & Gogolin, PRL 2001 Mishchenko, Andreev & Glazman, PRL 2001

- Coulomb interaction enhanced by disorder
- Nonperturbative theory: Interacting Nonlinear
 σ Model
 κamenev & Andreev, PRB 1999
- Equivalent to Coulomb Blockade: spectral density I(ω) of intrinsic electromagnetic modes $P(E) = \text{Re} \int_{0}^{\infty} \frac{dt}{\pi} \exp[iEt + J(t)]$

$$J(T=0,t) = \int_{0}^{\infty} \frac{d\omega}{\omega} I(\omega) \left(e^{-i\omega t} - 1\right)$$

Intrinsic Coulomb blockade

■ TDoS \iff Debye-Waller factor P(E):

$$\frac{v(E)}{v_0} = \int d\varepsilon P(E - \varepsilon) \frac{1 + e^{-E/k_B T}}{1 + e^{-\varepsilon/k_B T}}$$

■ For constant spectral density: Power law with exponent $\alpha = I(\omega \rightarrow 0)$ Here:

$$I(\omega) = \frac{U_0}{2\pi(D^* - D)} \operatorname{Re} \sum_{n} \left(\left[-i\omega/D^* + n^2 / R^2 \right]^{-1/2} - \left(D^* \to D \right) \right)$$

$$D^*/D = 1 + v_0 U_0, D = v_F^2 \tau/2$$

Field/particle diffusion constants

Dirty MWNT

- High energies: $E > E_{Thouless} = D / (2\pi R)^2$
- Summation can be converted to integral, yields constant spectral density, hence power law TDoS with $\alpha = \frac{R}{2\pi v \cdot D} \ln \left(D^* / D\right)$
- Tunneling into interacting diffusive 2D metal
- Altshuler-Aronov law exponentiates into power law. But: restricted to $\ell < R$

Numerical solution

- Power law well below Thouless scale
- Smaller exponent for weaker interactions, only weak dependence on mean free path
- 1D pseudogap at very low energies

Mishchenko et al., PRL 2001

Egger & Gogolin, Chem.Phys.2002

$$\ell = 10 R, U_0 / 2\pi v_F = 1, v_F / R = 1$$

Superconductivity in ropes of SWNTs

Kasumov et al., PRB 2003

Experimental results for resistance

Continuum elastic theory of a SWNT:

Acoustic phonons

De Martino & Egger, PRB 2003

Displacement field:

$$\vec{u}(x,y) = (u_x, u_y, u_z)$$

Strain tensor:

$$u_{yy} = \partial_y u_y$$

$$u_{xx} = \partial_x u_x + u_z / R$$

$$2u_{xy} = \partial_y u_x + \partial_x u_y$$

Elastic energy density:

$$U(\vec{u}) = \frac{B}{2} \left(u_{xx} - u_{yy} \right)^2 + \frac{\mu}{2} \left(\left(u_{xx} - u_{yy} \right)^2 + 4u_{xy}^2 \right)$$

Suzuura & Ando, PRB 2002

Normal mode analysis

Breathing mode

$$\omega_B = \sqrt{\frac{B + \mu}{MR^2}} \approx \frac{0.14}{R} \text{ eV Å}$$

Stretch mode

$$v_S = \sqrt{4B\mu/M(B+\mu)} \approx 2 \times 10^4 \text{ m/s}$$

Twist mode

$$v_T = \sqrt{\mu / M} \approx 1.2 \times 10^4 \text{ m/s}$$

Electron-phonon coupling

Main contribution from deformation potential

$$V(x, y) = \alpha \left(u_{xx} + u_{yy}\right) \qquad \alpha \approx 20 - 30 \text{ eV}$$

couples to electron density

$$H_{el-ph} = \int dx dy \ V \rho$$

- Other electron-phonon couplings small, but potentially responsible for Peierls distortion
- Effective electron-electron interaction generated via phonon exchange (integrate out phonons)

SWNTs with phonon-induced interactions

- Luttinger parameter in one SWNT due to screened Coulomb interaction: $g = g_0 \le 1$
- Assume good screening (e.g. thick rope)
- Breathing-mode phonon exchange causes attractive interaction:

For (10,10) SWNT:
$$g \approx 1.3 > 1$$

$$g = \frac{g_0}{\sqrt{1 - g_0^2 R_B / R}}$$

$$R_B = \frac{2\alpha^2}{\pi^2 v_F (B + \mu)} \approx 0.24nm$$

Superconductivity in ropes

De Martino & Egger, PRB 2004

Model:

$$H = \sum_{i=1}^{N} H_{Lutt}^{(i)} - \sum_{ij} \Lambda_{ij} \int dy \Theta_{i}^{*} \Theta_{j}$$

- Attractive electron-electron interaction within each of the N metallic SWNTs
- □ Arbitrary Josephson coupling matrix, keep only singlet on-tube Cooper pair field $\Theta_i(y,\tau)$
- Single-particle hopping again negligible

Order parameter for nanotube rope superconductivity

Hubbard Stratonovich transformation:

complex order parameter field

$$\Delta_{i}(y,\tau) = |\Delta_{i}|e^{i\Phi_{i}}$$

to decouple Josephson terms

Integration over Luttinger fields gives action:

$$S = \sum_{ij \in \mathcal{V}, \tau} \Delta_{ij}^* \Lambda_{ij}^{-1} \Delta_{j} - \ln \left\langle e^{-Tr \left(\Delta^* \Theta + \Theta^* \Delta \right)} \right\rangle_{Lutt}$$

Quantum Ginzburg Landau (QGL) theory

- 1D fluctuations suppress superconductivity
- Systematic cumulant & gradient expansion: Expansion parameter $|\Delta|/2\pi T$
- QGL action, coefficients from full model

$$S = Tr \left\{ \left(\Lambda_{1}^{-1} - A \right) \Delta \right|^{2} + B \left| \Delta \right|^{4} \right\} +$$

$$+ Tr \left\{ C \left| \partial_{y} \Delta \right|^{2} + D \left| \partial_{\tau} \Delta \right|^{2} \right\} +$$

$$+ Tr \sum_{ij} \Delta_{i}^{*} \left(\Lambda_{ij}^{-1} - \Lambda_{1}^{-1} \right) \Delta_{j}$$

Amplitude of the order parameter

Mean-field transition at

$$A\left(T_{c}^{0}\right) = \Lambda_{1}$$

- For lower *T*, amplitudes are finite, with gapped fluctuations
- Transverse fluctuations irrelevant for $N \le 100$
- QGL accurate down to very low T

Low-energy theory: Phase action

 Fix amplitude at mean-field value: Lowenergy physics related to phase fluctuations

$$S = \frac{\mu}{2\pi} \int dy d\tau \left[c_s^{-1} (\partial_\tau \Phi)^2 + c_s (\partial_y \Phi)^2 \right]$$

Rigidity $\mu(T) = N\nu \left[1 - \left(\frac{T}{T_c} \right)^{(g-1)/2g} \right]$

 $v \approx 1$ from QGL, but also influenced by dissipation or disorder

Quantum phase slips: Kosterlitz-Thouless transition to normal state

- Superconductivity can be destroyed by vortex excitations: Quantum phase slips (QPS)
- Local destruction of superconducting order allows phase to slip by 2π
- QPS proliferate for $\mu(T) \le 2$
- True transition temperature

$$T_c = T_c^0 \left[1 - \frac{2}{N\nu} \right]^{2g/(g-1)} \approx 0.1...0.5K$$

Resistance in superconducting state

De Martino & Egger, PRB 2004

- QPS-induced resistance
- Perturbative calculation, valid well below transition:

$$\frac{R(T)}{R(T_c)} = \left(\frac{T}{T_c}\right)^{2\mu(T)-3} \frac{\int_0^\infty du \frac{1}{1+u^2} \left|\frac{\Gamma(\mu/2+iuT_L/2T)}{\Gamma(\mu/2)}\right|^4}{\int du \frac{1}{1+u^2} \left|\frac{\Gamma(\mu/2+iuT_L/2T)}{\Gamma(\mu/2)}\right|^4}$$

$$T_L = \frac{c_s}{\pi L}$$

Comparison to experiment

Ferrier, De Martino et al., Sol. State Comm. 2004

- Resistance below transition allows detailed comparison to Orsay experiments
- Free parameters of the theory:
 - □ Interaction parameter, taken as g = 1.3
 - Number N of metallic SWNTs, known from residual resistance (contact resistance)
 - Josephson matrix (only largest eigenvalue needed), known from transition temperature
 - ullet Only one fit parameter remains: $u \approx 1$

Comparison to experiment: Sample R2

Nice agreement

- Fit parameter near 1
- Rounding near transition is not described by theory
- Quantum phase slips→ low-temperature resistance
- Thinnest known superconductors

Comparison to experiment: Sample R4

- Again good agreement but more noise in experimental data
- Fit parameter now smaller than 1, dissipative effects
- Ropes of carbon nanotubes thus allow to observe quantum phase slips

Conclusions

- Nanotubes allow for field-theory approach
 - Bosonization & conformal field theory methods
 - Disordered field theories
- Close connection to experiments
 - Tunneling density of states
 - Crossed nanotubes & local Coulomb drag
 - Multiwall nanotubes
 - Superconductivity