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‘ Flectronic transport in nanotubes

Most mesoscopic effects have been observed
(see seminar of C.Schonenberger)
o Disorder-related: MWNTs
o Strong-interaction effects
o Kondo and dot physics
0 Superconductivity
0 Spin transport
o Ballistic, localized, diffusive transport

= What has theory to say?




Overview

= Field theory of ballistic single-wall nanotubes:
Luttinger liquid and beyond (A.0. Gogolin)

= Multi-terminal geometries
0 Y junctions (S. Chen & B. Trauzetiel)
o Crossed nanotubes: Coulomb drag (A. Komnik)

= Multi-wall nanotubes: Nonperturbative
Altshuler-Aronov effects (A.0. Gogolin)

= Superconductivity in ropes of nanotubes
(A. De Martino)




Metallic SWNTS: Dispersion relation

= Basis of graphite sheet A E(k)
contains two atoms:
two sublattices p=+/-,

equivalent to right/left ¥ X
Movers r=+/-

= Two degenerate Bloch -/~ B, K
waves at each Fermi

point K.K™ (a=+/-) =+ I=- =+ 1=
D,.(X, )




‘ SWNT: Ideal 1D quantum wire

= Transverse momentum quantization: k =0
IS only relevant transverse mode, all others
are far away

= 1D quantum wire with two spin-degenerate
transport channels (bands)

= Massless 1D Dirac Hamiltonian
= Two different momenta for backscattering:

qr =|E;|1v, <k, =|K|




‘ What about disorder?

= Experimentally observed mean free paths in
high-quality metallic SWNTs /¢ = 1um

= Ballistic transport in not too long tubes

= No diffusive regime: Thouless argument
gives localization length ¢=nN, ¢ =2/

= Origin of disorder largely unknown. Probably
substrate inhomogeneities, defects, bends
and kinks, adsorbed atoms or molecules,...

= For now focus on ballistic regime




Field theory of interacting SWN'T's

Egger & Gogolin, PRL 1997, EPJB 1998
Kane, Balents & Fisher, PRL 1997

= Keep only two bands at Fermi energy
= Low-energy expansion of electron operator:

ZWW B, (X, )
0. 3) = e
£ N2 7R

= 1D fermion operators: Bosonization applies

= Inserting expansion into full SWNT
Hamiltonian gives 1D field theory




Interaction potential (no gates...)

= Second-quantized interaction part:
H, = ;—Z [ararw;(FWw, (F)

xU (F -7 ) _(F)¥_ ()

= Unscreened potential on tube surface
e’/ K

(x—x’)2+4stin2[y_y }+af
2R

U =




‘ 1D fermion interactions

= Insert low-energy expansion

= Momentum conservation allows only two
processes away from half-filling

o Forward scattering: ,,Slow*“ density modes, probes
long-range part of interaction

o Backscattering: ,,Fast” density modes, probes
short-range properties of interaction

o Backscattering couplings scale as 7/R, sizeable
only for ultrathin tubes




‘ Backscattering couplings

Momentum exchange

2k,

with coupling constant

b=0.1¢’ /R f=0.05¢"/R




Bosonized form of field theory

= Four bosonic fields, index a=ctc—=sts

o Charge (c) and spin (s)

0 Symmetric/antisymmetric K point combinations
= Luttinger liquid & nonlinear backscattering

H =V§Fj Y[ +g.2(0,0,F |+

+f jdx{— COSQ._COSQ, —COSP._COSQP,, +COSP,_ cosgos+]+
+bj dx[cosgas_ +cos1§§_]cos¢c_




‘ Luttinger parameters for SWNT's

= Bosonization gives g .. =1

arxc+ —

= Logarithmic divergence for unscreened
interaction, cut off by tube length

— 1-1/2

g=g8. =|1+ ﬂi;; ln(%ﬂR) =

1

= ~0.2
JI+2E, /A

= Pronounced non-Fermi liquid correlations




Phase diagram (quasi long range order)

= Effective field theory T
can be solved in
practically exact way

= Low temperature
phases matter only for
ultrathin tubes or Iin
sub-mKelvin regime

Lattinger liquid

- e = CEe = = = = = -

T, 4 L_ -

T. 1+ CDW === —————

T ¥ p— (f / b)];? i Supercond.

kB];j — De_vF /b o< e_R/ Ry 0 0.2 0.5 B




‘ Tunneling DoS for nanotube

= Power-law suppression of tunneling DoS
reflects orthogonality catastrophe: Electron
has to decompose into true quasiparticles

= Experimental evidence for Luttinger liquid in
tubes available from TDoS

= Explicit calculation gives
v(x,E)=Re j dtei’ff<\}f(x,t)\{'+(x,0)> o E

Ny =g +1/g=2)/4

= Geometry dependence: =(1/g-1)/2>2n, .

end




 Conductance probes tunneling DoS

= Conductance across

kink: o,

= Universal scaling of
nonlinear conductance:

2
T2 gl [ dV o sinh| ~— [ 147, +—¢
2k, T

- coth( eV j—ilm‘l’(1+77€nd+ eV ]

2k, T ) 27




FEvidence for Luttinger liquid

G (uS)

1072

101}
100}

1071}

4 Segment |
¥ Segment Il
® Across the kink

0 10 200 300
T(K)

gives g around 0.22

Yao et al., Nature 1999

I (nA)

(di/dW)/T™

250

200

150

100

50

102 ¢

10°8

200 -100 0 100 200 4 4
v (mv)

50 100 150 200
v (mV)




‘ Multi-terminal circuits: Crossed tubes

By chance... Fusion: Electron beam welding
(transmission electron microscope)

Fuhrer et al., Science 2000
Terrones et al., PRL 2002




anotube Y junctions

—

Li et al., Nature 1999




Landauer-Biuttiker type theory for
Luttinger liquids?

= Standard scattering approach useless:

Elementary excitations are fractionalized
quasiparticles, not electrons

No simple scattering of electrons, neither at
junction nor at contact to reservoirs
= Generalization to Luttinger liquids

Coupling to reservoirs via radiative boundary
conditions (or g(x) approach)

Junction: Boundary condition plus impurities




‘ Description of junction (node)

Hs
‘ Chen, Trauzettel & Egger, PRL 2002
Egger, Trauzettel, Chen & Siano,

NJP 2003
Hy
' H,

= Landauer-Buttiker: Incoming and outgoing states
related via scattering matrix (0) = SW_ (0)

= Difficult to handle for correlated systems
= What to do ?




'Some recent proposals ...

= Perturbation theory in interactions
Lal, Rao & Sen, PRB 2002

= Perturbation theory for almost no

transmission Safi, Devillard & Martin, PRL 2001
= Node as island Nayak, Fisher, Ludwig & Lin, PRB 1999
= Node as ring Chamon, Oshikawa & Affleck, PRL 2003

= Node boundary condition for ideal symmetric
junction (exactly solvable)

additional impurities generate arbitrary S matrices,
no conceptual problem chen, Trauzettel & Egger, PRL 2002




Tdeal symmetric junctions

= N>2 branches, junction with S matrix

2
(z—=1 7z ... z ) 2z= —, 120
| N+iAd
S = SR Crossover from full to no

transmission tuned by A

\ < < Z_l/ Texier & Montambaux, JP A 2001
= Implies wavefunction matching at node

W (0)=¥,0)=..=,0)
W.(0)=%,

j,in

O)+%,,.0)




‘ Boundary conditions at the node

= Wavefunction matching implies density
matching p,(0)=...= p, (0)
=P CaN be handled for Luttinger liquid

= Additional constraints:
o Kirchhoff node rule Z I, =0
o Gauge invariance

= Nonlinear conductance matrix e ol

can then be computed exactly G; = h ou
for arbitrary parameters /




‘Solution for Y junction with g=7/2

Nonlinear conductance:

8 1% 2 V.
Gii_g(l_ AUJ+§Z(1— %Ujj
JFl

with eV, I W L+TB+le(Ui—Vi/2)
2T, 2 27T

— 18
T,/ D=w,

2(\/N2+/12—\/ﬁ)

JN(N =2)+ &

w, (N, A) =




‘ Nonlinear conductance
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Tdeal junction: Fixed point

I T |
g=1/3

= Symmetric system
breaks up into
disconnected wires at
low energies

= Only stable fixed point

= Typical Luttinger power | ~
law for all conductance [
coefficients
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‘ Asymmetric Y junction

= Add one impurity of strength W in tube 1
close to node

= Exact solution possible for g=3/8 (Toulouse
limit in suitable rotated picture)

= [Transition from truly insulating node to
disconnected tube 1 + perfect wire 2+3

A

P

N




‘ Asymmetric Y junction: g=3/§

= Full solution:
I, =1 -6I,1,,=1,,+61/2

= Asymmetry contribution

70
51 = oW Im @ L+WB+27n[Il 5112/ e
2 2T

W,=a2W?/D

= Strong asymmetry limit:
I,=0,1,,=1),+1/2




 Crossed tubes: Theory vs. experiment

Komnik & Egger, PRL 1998, EPJB 2001
Gao, Komnik, Egger, Glattli, Bachtold, PRL 2004

| : siriinians W AWY

Itube-tube=0

= Weakly coupled crossed nanotubes
o Single-electron tunneling between tubes irrelevant
o Electrostatic coupling relevant for strong interactions

= Without tunneling: Local Coulomb drag




Characterization: Tunneling DoS

= Tunneling conductance
through crossing: QT
Power law, consistent |
with Luttinger liquid

= Quantitative fit gives
g=0.16

= Evidence for Luttinger 01 o 3
quUId beyond TDoS? - oulkebulk ™ 110 ] " Opulkebulk = 1
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‘ Dependence on transverse current

60

)

= Experimental data z
show suppression of
zero-bias anomaly
when current flows
through transverse tube

= Coulomb blockade or
heating mechanisms
can be ruled out

= Prediction of Luttinger
liquid theory?

dl,/dV, (i

dl,/dV, (uS)




‘ Hamiltonian for crossed tubes

= Without tunneling: Electrostatic coupling and
crossing-induced backscattering

H=H;+H;+2,p,0)p,0)+ > 4p,0)

i=A/B

H, =%Idx[ﬂf+(ax¢i)2]

= Density operator:
P 4,5 (X) o< CcOS {\/16738 Paip (X)J




Renormalization group equations

= Lowest-order RG equations:

I _(1-8¢)A +21,1,
di
dA

df;/B = (1 —4g )/1,4/3

= Solution:
Aas) =€ 2,,,(0)

A, (D) =" 2, (0) =24, (0) 4, (0) ]|+ 272" 1, (0) 4, (0)

= Here: inter-tube coupling most relevant!




Low-energy solution

= Keeping only inter-tube coupling, problem is
exactly solvable by switching to symmetric
and antisymmetric (+) boson fields

m For g=3/16=0.1875, particularly simple:

4e’ | U,tU_

I,,,= V, g — ————
AlB h AlB \/5

L, kyTy + ie(V, -U,)
2 27k T

eU , =2k,T, Im ‘P(

V. =

>




‘ Comparison to experimental data
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 New evidence for Luttinger liquid

Gao, Komnik, Egger, Glattli & Bachtold, PRL 2004
= Rather good agreement, only one fit
parameter: 7, =11.6K
= No alternative explanation works

= Agreement is taken as new evidence for
Luttinger liquid in nanotubes, beyond
previous tunneling experiments

= Additional evidence from photoemission
experiments Ishii et al., Nature 2003




 Coulomb drag: Transconductance

= Strictly local coupling: Linear transconduc-
tance G ,, always vanishes

= Finite length: Couplings in +/- sectors differ

ﬂ L/2
Ay = A, =2 [ dx cos 2k, , £k, ,)x]
L —L/2
\ ﬂ+ 1/(1-2g)
T, /D =( %j
T <" Now nonzero linear transconductance,
B — "B

except at 7=0




Linear transconductance: 9=17/4
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' Absolute Coulomb drag

Averin & Nazarov, PRL 1998
Flensberg, PRL 1998
Komnik & Egger, PRL 1998, EPJB 2001

For long contact & low temperature (but finite):
Transconductance approaches maximal
value

2
G, (T #0.T; IT, — 0)=2""

2




 Coulomb drag shot noise

Trauzettel, Egger & Grabert, PRL 2002

= Shot noise at T=0 gives important information

beyond conductance P(@) = j dte™™ (81 ()31 (0))

= For two-terminal setup & one weak impurity:
DC shot noise carries no information about
fractional charge P =2el

Ponomarenko & Nagaosa, PRB 1999

m Crossed nanotubes: For V,=0,V, #0= P, #0
must be due to cross voltage (drag noise)




‘ Shot noise transmitted to other tube

= Mapping to decoupled two-terminal problems
in £ channels implies (5. (1)S1_(0)) = 0

= Consequence: Perfect shot noise locking
P,=P,=(P +P)/2

2 Noise in tube A due to cross voltage is exactly
equal to noise in tube B

o Requires strong interactions, g<1/2
o Effect survives thermal fluctuations




‘ Multi-wall nanotubes: The disorder-
interaction problem

= Russian doll structure, electronic transport in
MWNTs usually in outermost shell only

= Energy scales one order smaller
= Typically N, . =20 due to doping

= Inner shells can also create disorder’
0 Experiments indicate mean free path / = R...10R
o Ballistic behavior on energy scales

Et>1l,t=10/v,




‘ Tunneling between shells

Maarouf, Kane & Mele, PRB 2001

= Bulk 3D graphite is a . Band overlap,
tunneling between sheets quantum coherent

= In MWNTs this effect is strongly suppressed

Statistically 1/3 of all shells metallic (random
chirality), since inner shells undoped

For adjacent metallic tubes: Momentum
mismatch, incommensurate structures

Coulomb interactions suppress single-electron
tunneling between shells




Interactions in MWNT's: Ballistic limit

Egger, PRL 1999

= Long-range tail of interaction unscreened

= Luttinger liquid survives in ballistic limit, but
Luttinger exponents are close to Fermi liquid,

e.g. 1
77 //Nbands

= End/bulk tunneling exponents are at least
one order smaller than in SWNTs

= Weak backscattering corrections to
conductance suppressed even more!




 Experiment: TDoS of MWN'T

Bachtold et al., PRL 2001

= 1D0oS observed from
conductance through
tunnel contact

= Power law zero-bias
anomalies

= Scaling properties
similar to a Luttinger
liquid, but: exponent
larger than expected
from Luttinger theory




‘ Tunneling DoS of MWNTSs

Bachtold et al., PRL 2001
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‘ Interplay ot disorder and interaction

Egger & Gogolin, PRL 2001
Mishchenko, Andreev & Glazman, PRL 2001

= Coulomb interaction enhanced by disorder

= Nonperturbative theory: Interacting Nonlinear
o Model Kamenev & Andreev, PRB 1999

= Equivalent to Coulomb Blockade: spectral
density /(w) of intrinsic electromagnetic

modes P(E)=Re j—exp[lEt + J(t)]

J(T =0,1) = T?wl(w)(e"“’f 1)




Intrinsic Coulomb blockade

x TDoS = Debye-Waller factor P(E):
V(E) —E[kgT

VO

= For constant spectral density: Power law with
exponent o =1(w — 0) Here:

I(@)=—— ReZU—iw/D* i 2}1/2 -(p" > D)j
2n(D"—-D) = R
D' /D=1+vU,, D=v;7/2
Field/particle diffusion constants

1+ e
)1+e

= jdeP(E—g




Dirty MWNT

= High energies: E > E,, .~ =D /(27R)"

= Summation can be converted to integral,
yields constant spectral density, hence power
law TDoS with R

=5 m(p"/D)

= Tunneling into interacting diffusive 2D metal

= Altshuler-Aronov law exponentiates into
power law. But: restrictedto 7/ < R




‘ Numerical solution
Egger & Gogolin, Chem.Phys.2002

|

= Power law well below
Thouless scale

= Smaller exponent for
weaker interactions, -
only weak dependence ~ (|~

0.1}

v(E) /v

on mean free path 5 " mw o

| o

= 1D pseudogap at very o R
low energies | 0001 001 0l 1

E
¢=10R,U,/22v, =1,v, /IR =1

Mishchenko et al., PRL 2001




Superconductivity in ropes of SWN'T's
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Experimental results for resistance
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Continuum elastic theory of a SWN'T:

ACOHSUC phonOnS De Martino & Egger, PRB 2003

= Displacement field:  u(x,y)=(u,,u ,u)
= Strain tensor:
l/lyy = ayu)’

u, =0 u_ +u_/R

2u,, =0d u,+9d.u,

m Elastic energy density:

(@)= =0, F +5 =0, F +u)

Suzuura & Ando, PRB 2002




 Normal mode analysis

=

= Breathing mode s—Q—r A”_B/

|

0, = B+‘§lz0'14eV,& |
MR R 00 0.5 qu 1.5

m Stretch mode —
Vg =4Bu/ M (B+ ) =~ 2x10* m/s — =

m [wist mode

i
v, =i/ M =12x10*m/s (ﬁ




‘ Electron-phonon coupling

= Main contribution from deformation potential
Vi) =alu, +u,) a=20-30eV

couples to electron density
Hel—ph — jdXdy VIO

= Other electron-phonon couplings small, but
potentially responsible for Peierls distortion

= Effective electron-electron interaction generated
via phonon exchange (integrate out phonons)




SWN'T's with phonon-induced interactions

= Luttinger parameter in one SWNT due to
screened Coulomb interaction: g=g,<1

= Assume good screening (e.g. thick rope)

= Breathing-mode phonon exchange causes
attractive interaction:

_ 80
For (10,10) SWNT: &= 2R IR
g=13>1 \/ 80 Ry
2a°

R ~ (0.24nm

B 72'2vF(B+,u)




‘ Superconductivity in ropes

De Martino & Egger, PRB 2004

Model:
H=YH{ -YA,[de0
i=1 ij

0 Attractive electron-electron interaction within
each of the N metallic SWNTs

o Arbitrary Josephson coupling matrix, keep
only singlet on-tube Cooper pair field ©,(y,r)

0 Single-particle hopping again negligible




Order parameter for nanotube rope
superconductivity

s Hubbard Stratonovich transformation:
complex order parameter field

Ai()’af): ‘Ai e
to decouple Josephson terms
= Integration over Luttinger fields gives action:

¢ Z A*l'A_ilej _In <e—Tr (A*@+(~)*A)>

ij,v7T

Lutt




‘ Quantum Ginzburg Landau (QGL) theory

= 1D fluctuations suppress superconductivity

s Systematic cumulant & gradient expansion:
Expansion parameter |A|/27T

» QGL action, coefficients from full model
s=1r (A - A)A] + BIA['
+ Tr {C‘ayA‘z + D BTA\2}+
+7r Y A(A - AT A
ij




‘ Amplitude of the order parameter

= Mean-field transition at

A(TCO):AI 02 "o ]
= Forlower T, amplitudes o} o .
are finite, with gapped - 0

fluctuations

= [ransverse fluctuations
irrelevant for N <100 0,05

s QGL accurate down to

Ao/2TTT
)

very low T S T E—




Low-energy theory: Phase action

= Fix amplitude at mean-field value: Low-
energy physics related to phase fluctuations

§=4 [ayaele 0,07 +¢,0, 0]

= Rigidity i (T j(g”’zg_
u(T)=Nv|1- A

v =1 from QGL, bL_J’[ also influenc_ed by
dissipation or disorder




‘ Quantum phase slips: Kosterlitz-Thouless

transition to normal state

= Superconductivity can be destroyed by vortex
excitations: Quantum phase slips (QPS)

= Local destruction of superconducting order
allows phase to slip by 2

= QPS proliferate for w(7T)<2
m [rue transition temperature

1

2

Nv

T2g/(g-1)

~(.1...0.5K




Resistance 1n superconducting state

De Martino & Egger, PRB 2004

0 QPS-induced resistance

0 Perturbative calculation, valid well below

transition:
T 1 |T(u/2+iuT, /2T)
241(T)-3 jdu
@:(T ) o tu [(u/2)
R(T) /1. 1 |D(w/2+iuT, 12T)

(1/2)




‘ Comparison to experiment

Ferrier, De Martino et al., Sol. State Comm. 2004

= Resistance below transition allows detailed
comparison to Orsay experiments

= Free parameters of the theory:
o Interaction parameter, takenas g =1.3

o Number N of metallic SWNTs, known from
residual resistance (contact resistance)

o Josephson matrix (only largest eigenvalue
needed), known from transition temperature

0 Only one fit parameter remains: v = |

U




‘ Comparison to experiment: Sample R2

Nice agreement 1
= Fit parameter near 1

= Rounding near v=0.75
transition is not N=87

j—
oo
I

)
(@)
[

_ § T.=055K
described by theory > D
= Quantum phase slips > F
— low-temperature .
resistance
= [hinnest known V=0 O'6T/T BT

superconductors




‘ Comparison to experiment: Sample R4

= Again good agreement

1

but more noise In
experimental data

= Fit parameter now
smaller than 1,
dissipative effects

= Ropes of carbon
nanotubes thus allow

e
oo

v=0.16
N =43
T.=0.12K

=
(@)
T
|

R(T)/R(T¢)

o
)
[
|

o

to observe quantum SET—
phase slips | TIT, |




‘ Conclusions

= Nanotubes allow for field-theory approach

Bosonization & conformal field theory methods
Disordered field theories

= Close connection to experiments
Tunneling density of states

Crossed nanotubes & local Coulomb drag
Multiwall nanotubes

Superconductivity




