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Overview

� Introduction to graphene

� Dirac-Weyl equation
� Effects of disorder and interactions

� Klein paradoxon

� Inhomogeneous magnetic fields

� (integer) Quantum Hall Effect

� Magnetic barrier

� Magnetic quantum dot

not discussed in this talk: superconductivity in graphene, bi- or
multilayer, phonon effects etc.

Ref.:  De Martino, Dell‘Anna & Egger, PRL 98, 066802 (2007)



Graphene

� Graphene monolayers: prepared by

mechanical exfoliation in 2004 & by epitaxial

growth in 2005 (but different properties!)

Novoselov et al., Science 2004, Nature 2005, 

Zhang et al. Nature 2005, Berger et al., Science 2006

� „Parent system“ of many carbon-based

materials (nanotubes, fullerene, graphite)

� Tremendous research activity at present

review article: Geim & Novoselov, Nat. Mat. 6, 183 (2007)



Graphene

� Monolayer graphene sheets (linear 

dimension of order 1mm) have been

fabricated

� on top of non-crystalline substrates

� suspended membrane

� in liquid suspension

� Technologically interesting: high mobility

(comparable to good Si MOSFET), even at 

room temperature



Graphene: a new 2DEG 

� 2DEG represents surface state: possibility to 
probe by STM/AFM/STS techniques

� Electron-phonon coupling: spontaneous
„crumpling“ of suspended monolayer reflects
instability of 2D membrane Meyer et al., Nature 2007

� Electronic transport
� „Half-integer“ Quantum Hall effect

� „Universal conductivity“ (undoped limit)

� Perfect (Klein) tunneling through barriers

� Aspects related to Dirac fermion physics



Graphene: Tight binding description

Basis contains two

atoms; nearest-
neighbor hopping

connects different 

sublattices

nmdda 14.0,3 ==

Wallace, Phys. Rev. 1947



Band structure

Exactly two independent corner
points K, K´ in first Brillouin zone.

Band structure: valence and 
conduction bands touch at corner

points (E=0), these are the Fermi
points in undoped graphene

� Low energies: Dirac light cone
dispersion

� Deviations at higher energies: 

trigonal warping
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Dirac Weyl Hamiltonian

Low energy continuum limit: 

massless relativistic quasiparticles

8 component spinor quantum field: 
spin, sublattice, K point („valley“) degeneracy

Pauli matrices in sublattice space:
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Electron-electron interactions

� Kinetic and Coulomb energy both scale linearly in 
density interaction parameter rs not tunable by
gate voltage

� Simple estimate:
� RG theory: interactions scale to weak coupling
� Fermi liquid theory holds, but not RPA  

Mishchenko, PRL 2007

� Experiments observe near cancellation of exchange and 
correlation energy Martin et al., cond-mat/0705.2180

� no spectacular deviations from noninteracting
predictions expected
� Exceptions exist, e.g., asymmetric-in-B part of  IV curve

De Martino, Egger & Tsvelik, PRL 2006

� In the following: disregard electron-electron interaction

1≈sr



Disorder effects

Two experimental

puzzles

� Universal minimum

conductivity ~4e2/h

� Linear dependence

of conductivity on 

doping

Novoselov et al., Nature 2005



Theoretical implications

Experimental data can be rationalized only if

short-range impurity scattering suppressed

� Dominant mechanism: long-ranged Coulomb

scattering by defects Nomura & MacDonald, PRL 2007

� Then no K-K´ mixing

� Otherwise: strong localization expected Altland, PRL 2006

� Universal „minimum conductivity“ currently subject to 

considerable & hot theoretical debate
Badarzon, Twordzydlo, Brouwer & Beenakker, cond-mat/0705.0886, 

Ostrovsky, Gornyi & Mirlin, PRB 2006



Universal minimum conductivity?

Subtle issue… 

compare order of limits for the optical

conductivity of clean system at low frequency
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Disorder would have to increase conductivity to explain

experimental data…



Klein tunneling
� Dirac fermions can perfectly

tunnel through high and wide

barrier

� Electron and hole encoded in 
same equation (spinor!):

Charge-Conjugation Symmetry

� Graphene provides good 

opportunity to study this

effect Williams, Di Carlo &    

Marcus, cond-mat 0704.3487

� But: Confinement by
electrostatic fields (gates) is

then difficult

O.Klein, Z. Phys. B 1929

Katsnelson et al, Nature Phys. 2006



Electrostatic confinement

� Smooth electrostatic potentials: 
K-K´ scattering suppressed

� Single K point theory: Klein tunneling most
pronounced for normal incidence on barrier, 
other states may be reflected

Silvestrov & Efetov, PRL 2007

� How to produce mesoscopic structures? 
(quantum point contacts, quantum wires, 
quantum dots etc.)     

� Our proposal: use magnetic barriers



Inhomogeneous magnetic field

Perpendicular orbital magnetic field

� Simplest level: ignore Zeeman field (and e-e 
interaction)          electron spin irrelevant

� Consider ballistic case (for simplicity)
� Disorder mostly of long-range type, preserves valley

degeneracy Nomura & MacDonald, PRL 2006

� For smooth field variation (on scale a):

K and K´ states remain decoupled,
focus on single K point theory

Now: „minimal substitution“
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Dirac-Weyl equation with magnetic field

equivalent to pair of decoupled Schrödinger-

like equations:

� Energies come in plus-minus pairs (chiral
Hamiltonian)

� Zeeman-like term in sublattice space
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Homogeneous field

Relativistic Landau levels, 4-fold degenerate

results in „half-integer“ QHE because of 

presence of zero-energy state
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Experimentally confirmed
Zhang et al., Nature 2005, Novoselov et al., Nature Phys. 2006
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Integer QHE in graphene: expt. data



Magnetic barrier: Model

Consider square barrier: 

Good approximation for

Convenient gauge: 

y component of momentum conserved! 

aBF >> λλ





>

<
=

dx

dxB
yxB

,0

,
),(

0









>

<

−<−

⋅=

dxd

dxx

dxd

eBA y

,

,

,

0

rr

edge smearing length



Magnetic barrier: Solution

… pair of decoupled 1D Schrödinger eqns
(assume electron-like state )

Effective potentials

parametrize momentum by kinematic

incidence angle

Gauge invariant velocity: 
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Incoming scattering state (from left)

Left of the barrier:

Under the barrier:

Right of the barrier:

with emergence angle in
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Perfect reflection regime

� Transmission/reflection probability

� Relation between emergence and incidence

angle from y-momentum conservation

� No solution, i.e. perfect reflection, for low

energy and/or wide barrier
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Dirac Weyl quasiparticles



Transmission probability

angular plot of 

transmission

probability

(away from the

perfect reflection

regime)
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Magnetic quantum dot

� Circularly symmetric magnetic field

� Total angular momentum is

conserved, good quantum number

� gives Dirac-Weyl radial (1D) equations
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Simple model for magnetic dot

Again simple step-type model:

Solution: 
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quantization condition!



Magnetic dot eigenenergies

(above zero, but below first bulk Landau level)

Energy levels

tunable via 
magnetic field

Estimate: 
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Conclusions

� Graphene as model 2DEG system made of 

relativistic Dirac fermions

� Klein tunneling: Dirac fermions cannot be

easily trapped by electrostatic fields

� Magnetic fields (inhomogeneous) can confine

Dirac fermions. Solution discussed for

� Magnetic barrier (square barrier)

� Magnetic dot (circular confinement)


