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Overview
Ref.: De Martino, Dell’/Anna & Egger, PRL 98, 066802 (2007)

= Introduction to graphene

= Dirac-Weyl equation
o Effects of disorder and interactions
o Klein paradoxon
o Inhomogeneous magnetic fields
o (integer) Quantum Hall Effect

= Magnetic barrier
= Magnetic quantum dot

not discussed in this talk: superconductivity in graphene, bi- or
multilayer, phonon effects etc.




‘ Graphene

review article: Geim & Novoselov, Nat. Mat. 6, 183 (2007)

= Graphene monolayers: prepared by
mechanical exfoliation in 2004 & by epitaxial
growth in 2005 (but different properties!)

Novoselov et al., Science 2004, Nature 2005,
Zhang et al. Nature 2005, Berger et al., Science 2006

= ,Parent system® of many carbon-based
materials (nanotubes, fullerene, graphite)

= Tremendous research activity at present




‘ Graphene

= Monolayer graphene sheets (linear
dimension of order 1mm) have been
fabricated
on top of non-crystalline substrates
suspended membrane
in liquid suspension
= Technologically interesting: high mobility
(comparable to good Si MOSFET), even at
room temperature




‘ Graphene: a new 2DEG BT

= 2DEG represents surface state: possibility to
probe by STM/AFM/STS techniques

= Electron-phonon coupling: spontaneous
,crumpling” of suspended monolayer reflects
mstablllty of 2D membrane Meyer et al., Nature 2007

= Electronic transport
0 ,Half-integer” Quantum Hall effect
o ,Universal conductivity” (undoped limit)
o Perfect (Klein) tunneling through barriers
o Aspects related to Dirac fermion physics




‘ Graphene: Tight binding description

Wallace, Phys. Rev. 1947
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‘ Band structure

Exactly two independent corner
points K, K" in first Brillouin zone.

Band structure: valenceand ~ / fffffffffffff |
conduction bands touch at corner *
points (E=0), these are the Fermi
points in undoped graphene

= Low energies: Dirac light cone E(G)= ihv\é\
dispersion L.

= Deviations at higher energies:
trigonal warping v =10°m/sec




'Dirac Weyl Hamiltonian

Low energy continuum limit:
massless relativistic quasiparticles

H=Hy+H=v|dr ¥ (-itV-6)¥

8 component spinor quantum field:
spin, sublattice, Kpoint(valley“) degeneracy

\P(X )7) ( TA’ TB’ ”9LIIK',\L,B)

Pauli matrices in sublattice space: o=(0,,0,)




‘ Electron-electron interactions

= Kinetic and Coulomb energy both scale linearly in

density #>» interaction parameter r, not tunable by
gate voltage

Simple estimate: r, = 1
o RG theory: interactions scale to weak coupling

o Fermi liquid theory holds, but not RPA
Mishchenko, PRL 2007

o Experiments observe near cancellation of exchange and

correlation energy Martin et al., cond-mat/0705.2180
no spectacular deviations from noninteracting
predictions expected

o Exceptions exist, e.g., asymmetric-in-B part of /V curve
De Martino, Egger & Tsvelik, PRL 2006

In the following: disregard electron-electron interaction




‘ Disorder effects

Two experimental -
puzzles

= Universal minimum I R R
conductivity ~4e</h  ° a

= Linear dependence \I H |
of conductivity on LA B
doping o

Novoselov et al., Nature 2005




‘ Theoretical implications

Experimental data can be rationalized only if

short-range impurity scattering suppressed

o Dominant mechanism: long-ranged Coulomb
scattering by defects  Nomura & MacDonald, PRL 2007

o Then no K-K™ mixing

o Otherwise: strong localization expected Altland, PRL 2006

o Universal ,minimum conductivity® currently subject to
considerable & hot theoretical debate

Badarzon, Twordzydlo, Brouwer & Beenakker, cond-mat/0705.0886,
Ostrovsky, Gornyi & Mirlin, PRB 2006




Universal minimum conductivity?

Subtle issue...

compare order of limits for the optical
conductivity of clean system at low frequency

. T 4e’
limo(w, ! =)= e
w—0 /) . .
uawig et al., PRB 1994
2
limo(w=0,/)=12¢
[ T h

Disorder would have to increase conductivity to explain
experimental data...




‘ Klein tunneling

Di g : O.Klein, Z. Phys. B 1929
= Dirac fermions can perfectly Katsnelson et al, Nature Phys. 2006

tunnel through high and wide
barrier
o Electron and hole encoded in
same equation (spinor!):
Charge-Conjugation Symmetry
= Graphene provides good
opportunity to study this

effect  winiams, Di carlo &
Marcus, cond-mat 0704.3487

= But: Confinement by
electrostatic fields (gates) is
then difficult




‘ Electrostatic confinement

= Smooth electrostatic potentials:
K-K" scattering suppressed

= Single K point theory: Klein tunneling most
pronounced for normal incidence on barrier,
other states may be reflected
Silvestrov & Efetov, PRL 2007

= How to produce mesoscopic structures?
(quantum point contacts, quantum wires,
guantum dots etc.)

= Our proposal: use magnetic barriers




‘ Inhomogeneous magnetic tield

Perpendicular orbital magnetic field
B=B(x, y)e, =VXA
Simplest level: ignore Zeeman field (and e-e
interaction) #~> electron spin irrelevant

Consider ballistic case (for simplicity)

= Disorder mostly of long-range type, preserves valley
degeneracy Nomura & MacDonald, PRL 2006

For smooth field variation (on scale a):

K and K" states remain decoupled,
focus on single K point theory

Now: ,minimal substitution* —iZV — —ihV + eA




Dirac-Weyl equation with magnetic field

e i) o =ef "

equivalent to pair of decoupled Schrodinger-

HE SRS 9 4 eAf +eo.B. —?) W =0

o Energies come in plus-minus pairs (chiral
Hamiltonian)

o Zeeman-like term in sublattice space




‘ Homogeneous field B(x.y)= B,

Relativistic Landau levels, 4-fold degenerate
E = sgn (n)v\/ZeBO‘n‘

results in ,half-integer QHE because of
presence of zero-energy state

7, =* ot 1)

Experimentally confirmed
Zhang et al., Nature 2005, Novoselov et al., Nature Phys. 2006




‘ Integer QHE 1n graphene: expt. data




‘ Magnetic barrier: Model

. . ‘B,
Consider square barrier:  p(, \y_ )™

Good approximation for

0,

.

Ay, > A, > a

i

edge smearing length

Convenient gauge:
A=Bgé

y

2

—d, x<-d
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y component of momentum conserved!
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‘ Magnetic barrier: Solution

... pair of decoupled 1D Schrodinger egns
(assume electron-like state £ >0 )

(_ai +Vap (x)_ 82) WA/B(X): 0
Effective potentials Vs (x)=teA (x)+(p, +eA, (x)f

parametrize momentum by kinematic
incidence angle k,=é&cos ¢

ky:%:esin b+ edB

Gauge invariant velocity: v = v(C?S ¢j
sin @




Incoming scattering state (from left)

(1 |
Left of the barrier: ¥, = e”‘xx( l. ¢j+ re’kxx(
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‘ Perfect retlection regime

= Transmission/reflection probability
T =l R=|[ =1-T

= Relation between emergence and incidence
angle from y-momentum conservation

sin @' —sin @ = 2d g
B

= No solution, i.e. perfect reflection, for low
energy and/or wide barrier
gl, <d/l, opensup possibility of confining
Dirac Weyl quasiparticles @




‘Transmission probability

a) E:’B=3.?

—— d1,=05
angular plot of B i
C— -‘.’ir"?B=3,6?

transmission |
probability 7'(9)
(away from the
perfect reflection
regime)




‘ Magnetic quantum dot

—

= Circularly symmetric magnetic field B = B(r)e,
= Total angular momentum J=—iae+(f% IS

conserved, good quantum number j=m+1/2
= gives Dirac-Weyl radial (1D) equations
dg, m+o(r)

[VA) :[ ey (r) j 7 . 0, =1EY,

i(m+1)6 d
e r m+1+o\r ,
WB Zm( ) Zm 4+ ¢( )Zm :l8¢m
dr r
Magnetic flux through disc _ (... ,
of radius rin flux quanta o(r)= ejr dr'B(r’)
0




‘ Simple model for magnetic dot

O, r<R

Again simple step-type model: B(r)= {B S R
N

missing flux through dot

Solution: (in flux quanta) 0= R2 /2[2
¢, (r <R)=a_J,(er) ’

_ m=m-—o
D, (r>R)= a>§|m|/2e_§/2 2
52[2 52 r 2
x‘P[1+n“1'6?(n'7z)— 2B,1+\n'a;§j 2
I Matching problem gives energy

degenerate hyper-

geometric function quantization condition!




I Magnetic dot eigenenergies

(above zero, but below first bulk Landau level)
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Energy levels
tunable via
magnetic field




‘ Conclusions

= Graphene as model 2DEG system made of
relativistic Dirac fermions

= Klein tunneling: Dirac fermions cannot be
easily trapped by electrostatic fields

= Magnetic fields (inhomogeneous) can confine
Dirac fermions. Solution discussed for
Magnetic barrier (square barrier)
Magnetic dot (circular confinement)




